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SUMMARY

The Atg12-Atg5 conjugate, which is formed by an
ubiquitin-like conjugation system, is essential to
autophagosome formation, a central event in au-
tophagy. Despite its importance, the molecular
mechanism of the Atg12-Atg5 conjugate formation
has not been elucidated. Here, we report the solution
and crystal structures of Atg10 and Atg5 homologs
from Kluyveromyces marxianus (Km), a thermotoler-
ant yeast. KmAtg10 comprises an E2-core fold with
characteristic accessories, including two b strands,
whereas KmAtg5 has two ubiquitin-like domains
and a helical domain. The nuclear magnetic reso-
nance experiments, mutational analyses, and cross-
linking experiments showed that KmAtg10 directly
recognizes KmAtg5, especially its C-terminal ubiqui-
tin-like domain, by its characteristic two b strands.
Kinetic analysis suggests that Tyr56 and Asn114
of KmAtg10 may place the side chain of KmAtg5
Lys145 into the optimal orientation for its conjugation
reaction with Atg12. These structural features enable
Atg10 to mediate the formation of the Atg12-Atg5
conjugate without a specific E3 enzyme.

INTRODUCTION

Autophagy is an intracellular degradation system conserved

among eukaryotes from yeasts to mammals. In autophagy,

cup-shaped membrane structures called isolation membranes

expand and sequester cytoplasmic components and organelles,

which seal to become double-membrane-bound structures

called autophagosomes (Klionsky andOhsumi, 1999;Mizushima

et al., 2011; Nakatogawa et al., 2009). Autophagosome contents

are eventually delivered to vacuoles in yeast or lysosomes in

mammals. In higher eukaryotes, autophagy plays a crucial role

in fundamental biological processes, such as intracellular

clearance, differentiation, development, cell death, and antigen

representation, and autophagy dysfunction is associated with

disease, such as neurodegenerative disorders and cancers

(Mizushima, 2007). The formation step of autophagosomes
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requires two ubiquitin-like conjugation systems called the Atg8

and the Atg12 system (Noda et al., 2009; Ohsumi, 2001).

Ubiquitin (Ub) and ubiquitin-like proteins (Ubls) are ligated to

substrate lysine ε-amino groups in a sequential manner (Hershko

and Ciechanover, 1998). Ub/Ubls are first activated by E1

enzymes and then transferred to E2 enzymes to form E2�Ub/

Ubl thioester intermediates (where �means a thioester bond).

Finally, Ub/Ubls are transferred from E2�Ub/Ubl thioester to

the substrate acceptor lysine, which for the most part requires

E3 ligases. In the Atg12 system, the C-terminal glycine

(Gly120) of Atg12 (a Ubl) is activated by Atg7 (an E1-like enzyme)

to form an Atg7�Atg12 thioester intermediate and is then trans-

ferred to Atg10 (an E2-like enzyme) to form an Atg10�Atg12

thioester intermediate. Atg12 is finally conjugated to the

Lys149 side chain of Atg5 via an isopeptide linkage (Mizushima

et al., 1998; Shintani et al., 1999; Tanida et al., 1999). Atg5 is

a 294 amino acid protein that forms a stable complex with

Atg16, a coiled-coil protein, both of which have little sequence

homology with functionally characterized proteins (Mizushima

et al., 1998, 1999). In the Atg8 system, Atg8 (a Ubl) is conjugated

to the amino group of a phosphatidylethanolamine (PE) via

the reactions catalyzed by Atg7 and Atg3 (an E2-like enzyme)

(Ichimura et al., 2000). In vitro and in vivo studies have shown

that the Atg12-Atg5 conjugate promotes conjugation between

Atg8 and PE, which is achieved through direct interaction with

Atg3 (Fujioka et al., 2008; Fujita et al., 2008; Hanada et al.,

2007; Suzuki et al., 2001).

Atg10 achieves Atg12-Atg5 conjugation in an E3-enzyme

independent manner; however, the molecular details of how

Atg10 mediates the transfer of Atg12 to Atg5 remain unclear.

Although the structure of Atg5-Atg16 complex has revealed

the unique domain architecture of Atg5 comprising two ubiqui-

tin-like domains and a helical domain (Matsushita et al., 2007),

it remains to be elucidated whether the unique architecture is

conserved among Atg5 homologs and whether Atg16-binding

has some influences on that. Furthermore, the molecular role

of each Atg5 domain has not been established. To address

these issues, structural and functional analyses of Atg10 and

Atg5 using their homologs from a thermotolerant yeast,

Kluyveromyces marxianus (KmAtg proteins) (Nonklang et al.,

2008), were performed. Taking advantage of the higher stability

of KmAtg proteins (H.Y. and Y.O., unpublished data), two

structures, the solution structure of KmAtg10 and the crystal

structure of KmAtg5, were obtained. The KmAtg10-KmAtg5
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Table 1. Structural Statistics of KmAtg10

NOE distance constraints 3,282

Short range (intraresidue and sequential) 1,805

Medium range (2 % ji – jj % 4) 520

Long range (ji – jj > 4) 957

TALOS angle constraints (4 and c) 225

Number of violations

Distance > 0.2 Å 4

Angles > 3� 1

Structural coordinates rmsd (Å) (range 4–141)

Backbone atoms 0.53

All heavy atoms 0.95

Ramachandran plot

Most-favored regions (%) 77.9

Additionally allowed regions (%) 21.6

Generously allowed regions (%) 0.5

Disallowed regions (%) 0.0

Figure 1. Structure of KmAtg10 and Its Comparison with the Ubc9

Structure

(A) Ribbon diagrams of KmAtg10 (left) and Ubc9 (right) are shown in the

same orientation. a helices and b strands included in the E2 core structure

are colored red and cyan, respectively, and secondary structures unique to

KmAtg10 are colored yellow, whereas secondary structures that are

observed in Ubc9 but not in KmAtg10 and loops are colored gray. Four

a helices and seven b strands are denoted A-D and 1-6 and 40, respectively.
Amino and carboxyl termini are denoted N and C, respectively. The side

chain of the catalytic cysteine of KmAtg10 and Ubc9 is shown with a green

stick model.

(B) Topologies of KmAtg10 (left) and Ubc9 (right). Coloring is as in (A). Catalytic

cysteines are shown with a circled C and KmAtg10 Tyr56 and Ubc9 Tyr87

are shown with a circled Y, respectively. KmAtg10 Asn114 and Ubc9 Asp127

are shown with a circled N and D, respectively.

(C) Catalytic structure of KmAtg10 (left) and Ubc9 in complex with RanGAP1

(right). Catalytic cysteines and their surrounding important residues are shown

with stick models and colored yellow, red, and blue for sulfur, oxygen, and

nitrogen atoms, respectively. RanGAP1 is colored yellow.

(D) Superimposition of the catalytic-site structures of KmAtg10 and Ubc9

bound to RanGAP1. Superimposition was performed as described in the

Experimental Procedures. Carbon atoms of KmAtg10, Ubc9, and RanGAP1

are colored gray, magenta, and yellow, respectively, whereas other atoms

are colored as in (C).

See also Figure S1.
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interaction was then characterized by nuclear magnetic reso-

nance (NMR) experiments and biochemical assays, which

established the structural basis of the Atg10-mediated forma-

tion of the Atg12-Atg5 conjugate and explained how the E2

enzyme mediates the conjugation reaction without a specific

E3 enzyme.

RESULTS

KmAtg10 Has an E2-Core Fold with Characteristic
Accessories
We previously reported on the crystallization of Saccharomyces

cerevisiae (Sc) Atg10 (Yamaguti et al., 2007), but trials to deter-

mine its structure were unsuccessful because of crystal twin-

ning problems. ScAtg10 has an aggregate-prone nature that

is also not suited to NMR study (H.Y. and Y.O., unpublished

data). In general, proteins in thermophile organisms show

higher stability compared with their homologous proteins in

nonthermophile organisms. K. marxianus (Km), a thermotolerant

yeast that is closely related to Saccharomyces cerevisiae,

possesses homologous genes for all the Atg proteins consti-

tuting Atg8 and Atg12 systems, suggesting that they are also

conserved in this yeast. With the expectation of higher stability,

we selected KmAtg10 for structural study and succeeded in

determining the solution structure of KmAtg10 by NMR

spectroscopy. Assignments of the 1H-15N HSQC spectrum

(Biological Magnetic Resource Bank ID: 18277) and the overlay

of the 20 structures of KmAtg10 are shown in Figures S1A and

S1B (available online), respectively, and structural statistics

are shown in Table 1. Ribbon diagram of the lowest energy

structure of KmAtg10 is shown in Figure 1A, left. The overall

structure of KmAtg10 comprises four a helices (A-D) and seven

b strands (1-6 and 40).
For comparison, the structure of Ubc9, an E2 enzyme for small

ubiquitin-like modifier (SUMO) that possesses a canonical E2

fold is shown in Figure 1A, right, in the same orientation. All E2

enzymes reported to date have a conserved E2 core structure

composed of a central four-stranded b sheet and two a helices
Structure 20, 1244–1254, July 3, 2012 ª2012 Elsevier Ltd All rights reserved 1245
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(Figures 1A and 1B). KmAtg10 has the corresponding four-

stranded b sheet (b strands 1-4) and two a helices (A, D). Canon-

ical E2 enzymes, including Ubc9, have accessory region(s) at

the N terminus and/or the C terminus, which are important for

the interaction with binding partners (Wenzel et al., 2011);

however, KmAtg10 lacks these at both termini (Figures 1A and

1B). Unlike Ubc9, KmAtg10 has additional two a helices (B, C)

and three b strands (40, 5, 6) inserted in the E2 core (Figures 1A

and 1B). Canonical E2s conserve three catalytically important

residues in addition to the catalytic cysteine; these are Asn85,

Tyr87, and Asp127 in the case of Ubc9. Asn85 constitutes an

oxyanion hole and stabilizes a tetrahedral oxyanion intermediate

during catalysis (Wu et al., 2003; Yunus and Lima, 2006).

However, structural analysis of Ubc9 in complex with its

substrate RanGAP1 revealed that the side chains of Tyr87 and

Asp127 sandwich and fix the side chain of the acceptor lysine

(RanGAP1 Lys524) to the optimal position for the conjugation

reaction (Figure 1C, right) (Yunus and Lima, 2006). These mech-

anisms are believed to be conserved among E2s.

In the case of Atg10, these three residues are not conserved

in topologically equivalent positions. However, Tyr56 and

Asn114 of KmAtg10 are positioned near the catalytic Cys116,

and the spatial relative arrangement of Tyr56, Asn114, and

Cys116 of KmAtg10 is quite similar to that of Tyr87, Asp127,

and Cys93 of Ubc9 (Figures 1C and 1D). Tyr56 is strictly

conserved, whereas Ans114 is type-conserved (Asn or His)

among Atg10 homologs (Figures S1F and S1G). As for the

Asn85 of Ubc9, its equivalent residue is not observed in the

neighborhood of KmAtg10 Cys116. In summary, the structure

of Atg10 comprises the E2 core shared with canonical E2s and

noncanonical accessories, and the catalytic-site structure is

partially similar to that of canonical E2s.

KmAtg10 Directly Interacts with KmAtg5
using b5 and b6
The fact that Atg10 transfers Atg12 to Atg5 without the help of

other proteins, such as E3, raises the possibility that Atg10 itself

recognizes Atg5. However, there is no evidence for the direct

binding of Atg10 and Atg5. Using purified recombinant proteins,

we carried out an in vitro pulldown assay and detected weak

interaction between Atg5 and Atg10 (Figure S2A). In order to

know the Atg10-Atg5 interaction in detail, we used NMR spec-

troscopy to study the interaction.

We first performed a titration experiment using 15N-labeled

KmAtg10 and nonlabeled KmAtg5. When nonlabeled KmAtg5

was titrated into the solution containing 15N-labeled KmAtg10,

a number of cross-peaks in the HSQC spectrum of KmAtg10,

including Tyr56, Ser85, Val98, Thr99, Leu100, Met104, and

Ser108, shifted. Residues with appreciably large chemical

shift perturbations are plotted on the structure of KmAtg10

(Figures 2A–2C and S2B). The results showed that the residues

with large chemical shift perturbations were clustered at one

side of KmAtg10, including b strands 5 and 6 and Tyr56, a strictly

conserved residue near Cys116. To further confirm the binding

interface of KmAtg10 with KmAtg5, a transferred cross-satura-

tion experiment suitable for determining the contact residues

of a weak protein-protein complex of large molecular weight,

was performed using 2H, 15N-labeled KmAtg10 and nonlabeled

KmAtg5 (Nakanishi et al., 2002). The signal intensity ratio was
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calculated based on the spectra with and without irradiation.

The results showed that the intensities of the residues on b5,

b6, and those near the catalytic Cys116, including Arg64,

Thr99, Leu100, Val109, Asn114, and Thr118, significantly

decreased (Figures 2D–2F and S2D). The cross-peaks of Tyr56

and Tyr110 were attenuated in the course of titration by KmAtg5,

suggesting that these residues are likely to be involved in the

interaction between KmAtg10 and KmAtg5. Almost all affected

residues on the transferred cross-saturation experiment are

clustered on one side of Atg10, including Cys116 (Figures 2E

and 2F). Among these affected residues, those on b5 and b6

and Tyr56 are also affected on the titration experiments, sug-

gesting that they are particularly important in the interaction

with KmAtg5.

In Vitro Reconstitution of the Atg12 Conjugation System
for Biochemical Study
In order to investigate the role of each KmAtg10 residue in

the conjugation reaction, we next reconstituted the Atg12 conju-

gation system in vitro using recombinant KmAtg proteins.

Although we successfully purified recombinant proteins for

KmAtg5, KmAtg7, and KmAtg10, we failed to obtain recom-

binant KmAtg12 because of its aggregate-prone nature.

Among the Atg12 homologs, only the Arabidopsis thaliana

homolog (AtAtg12b) could be obtained as a soluble protein

(Suzuki et al., 2005). Therefore, AtAtg12b was used instead

of KmAtg12 for in vitro reconstitution. Purified KmAtg7,

KmAtg10, and KmAtg5 with a 6xHis-tag and AtAtg12b were

mixed with ATP and incubated for 2 hr at 303 K. A new band at

around 40 kDa was detected by both anti-AtAtg12b and anti-

6xHis antibodies and was observed only when all constituents

of the Atg12 conjugation system were included, indicating that

the new band corresponds to the AtAtg12b-KmAtg5 conjugate

(calculated molecular weight, 42 kDa) (Figures 3A and 3B).

Using the established reconstitution system, the catalytic

cysteine residues of KmAtg7 and KmAtg10, as well as the

acceptor lysine of KmAtg5, were studied. Based on the

sequence comparison with ScAtg proteins, KmAtg7 C488A,

KmAtg10 C116A, and KmAtg5 K145A mutants were prepared

and used in conjugation assays, which revealed that all of

them were defective in the formation of the AtAtg12b-KmAtg5

conjugate (Figure 3C). Moreover, the KmAtg10�AtAtg12b

thioester intermediate was normally formed when wild-type

KmAtg10 but not KmAtg10 C116A was used (Figure 3D). These

results clearly showed that KmAtg7 Cys488, KmAtg10 Cys116,

and KmAtg5 Lys145 are the catalytic cysteines and the acceptor

lysine, respectively, and demonstrated that the reconstituted

Atg12 system is useful for functional analysis.

Functional Characterization of the Atg10 Residues
Involved in Atg5 Binding
Among the residues affected by NMR experiments, we chose six

residues, Tyr56, Arg64, Thr99, Tyr110, Asn114, and Thr118 and

prepared KmAtg10 mutants with alanine substitutions. Arg64,

Thr99, and Tyr110 are located at b4, b5, and b6, respectively,

and expose their side chain, whereas Tyr56, Asn114, and

Thr118 are located at loop regions surrounding Cys116. In

addition to these six mutants, the Y56F mutant was prepared

to study the role of the hydroxyl group of Tyr56. These seven
hts reserved



Figure 2. KmAtg10-KmAtg5 Interaction Analyses by NMR

(A) Chemical shift perturbation experiments between KmAtg10 and KmAtg5. The residues with high Dppm values are colored red (>0.05) and yellow (>0.04),

respectively. The overlaid six HSQC spectra are shown in Figure S2B.

(B) The residues with high Dppm values are mapped on the structure of KmAtg10 shown in a ribbon diagram, and their side chains are shown with stick models.

Coloring is as in (A). The side chain of Cys116 is shown with a green stick model.

(C) Surface representation of B.

(D) Plot of the intensity ratios of the cross-peaks in the transferred cross-saturation experiments. The residues with low intensity ratio are shownwith stick models

and colored red (<0.8). The ratios for Tyr56 and Tyr110 were not available.

(E) The residues with low intensity ratio are mapped on the ribbon diagram of KmAtg10 (colored red). Tyr56 and Tyr110 are colored black and Cys116 is shown

with a green stick model.

(F) Surface representation of (E).

See also Figure S2.

Structure

Structure of Atg10 and Its Interaction with Atg5
KmAtg10 mutants and C116A were first subjected to in vitro

conjugation reactions under multiturnover conditions, and

those showing reduced activity were then subjected to in vitro

reactions dissected into two steps: the first being the formation

of the AtAtg12b�KmAtg10 thioester intermediate and the

second the final transfer of AtAtg12b from KmAtg10 to KmAtg5.

For the final transfer reaction, apparent Km and kcat values were

calculated based on kinetic data.

Among the mutants at b4-b6, T99A (b5) and Y110A (b6)

mutants showed significantly and slightly reduced levels of the

AtAtg12b-KmAtg5 conjugate, respectively, whereas the R64A
Structure 20, 1
mutant (b4) showed similar activity to wild-type KmAtg10

(Figures 4A and 4B). The T99A mutant retained normal activity

for forming the AtAtg12b�KmAtg10 intermediate (Figures 4C

and 4D) but showed a severe defect in the final transfer step

(Figure 4E and 4F). Kinetic analysis revealed that T99A mutation

showed a significantly increased Km value (i.e., weakened

affinity) but did not affect the kcat value in the final transfer reac-

tion (Figure 4G). HSQC spectra showed that the effects of the

T99A mutation on the protein structure were restricted to

microenvironmental changes (Figure S3B). Taken together,

these results suggested that KmAtg10 b5 contributes to the
244–1254, July 3, 2012 ª2012 Elsevier Ltd All rights reserved 1247



Figure 3. In Vitro Reconstitution of

AtAtg12b-KmAtg5 Conjugation System

(A)Where indicated (+) in the table, 10 mMKmAtg7,

10 mM KmAtg10, 10 mM AtAtg12b, and 10 mM

His-KmAtg5 weremixedwith or without 1mMATP

(+ or � ATP) and incubated for 2 hr at 303 K.

Samples were subjected to SDS-PAGE, and

protein bands were detected by CBB staining

(left), immunoblotting using anti-6xHis antibodies

(middle), or immunoblotting using anti-AtAtg12b

antibodies (right).

(B) 10 mM KmAtg7, 10 mM KmAtg10, 10 mM

AtAtg12b, and 10 mM KmAtg5 with 1 mM ATP

were incubated for the indicated time at 303 K. The

sample was subjected to SDS-PAGE, and the

AtAtg12b-KmAtg5 band was detected by CBB

staining.

(C) (Upper lane) The sequence alignment of the

region containing the catalytic cysteine between

KmAtg7 and ScAtg7, between KmAtg10 and

ScAtg10, and the region containing the acceptor

lysine between KmAtg5 and ScAtg5 are shown.

The catalytic cysteine of ScAtg7 (Cys507) and

ScAtg10 (Cys133) and their equivalent residue of

KmAtg7 (Cys488) and KmAtg10 (Cys116) are bold.

The acceptor lysine of ScAtg5 (Lys149) and its

equivalent residue of KmAtg5 (Lys145) are also

bold. (Lower lane) Samples containing 10 mM

KmAtg7, 10 mM KmAtg10, 10 mM AtAtg12b, and

10 mM KmAtg5 with 1 mM ATP were incubated for

2 hr at 303 K, and the samples were subjected to

SDS-PAGE, followed by immunoblotting using anti-AtAtg12b antibodies. CA in the lanes of KmAtg7 and KmAtg10 indicates C488A and C116A mutants,

respectively, whereas KA indicates the K145A mutant of KmAtg5. WT indicates wild-type proteins.

(D) Samples containing 10 mM KmAtg7, 10 mM KmAtg10, and 10 mM AtAtg12b with or without 1 mM ATP were incubated for 15 min at 303 K. The sample was

subjected to SDS-PAGE, and the bands for the KmAtg10�AtAtg12b thioester intermediate and the KmAtg7�AtAtg12b thioester intermediate were detected by

immunoblotting using anti-AtAtg12b antibodies.

Structure

Structure of Atg10 and Its Interaction with Atg5
affinity with KmAtg5 and that its contribution to the catalysis

is low.

All alanine mutants at the loops near Cys116, namely, Y56A,

N114A, and T118A, showed significantly reduced levels of the

AtAtg12b-KmAtg5 conjugate (Figures 4A and 4B). KmAtg10

Y56F showed normal activity, suggesting that the aromatic

ring but not the hydroxyl group of Tyr56 plays an important

role in the formation of the AtAtg12b-KmAtg5 conjugate.

Y56A, N114A, and T118A all retained normal activity for forming

the AtAtg12b�KmAtg10 intermediate (Figures 4C and 4D),

while showing a severe defect in the final transfer step (Figures

4E and 4F). Kinetic analysis revealed that these three mutations

showed severely reduced kcat values, whereas their effect on

the Km value is small in the final transfer reaction (Figure 4G).

HSQC spectra showed that the effects of Y56A and N114A

mutations on the protein structure were restricted to microenvi-

ronmental changes (Figures S3A and S3C). On the other hand,

a number of residues with large chemical shift perturbations

were observed in the T118A mutant, suggesting that Thr118

is important for the proper folding of KmAtg10 and that its

mutation induced a conformational change in the wide region

of KmAtg10 (Figure S3D). Taken together, these results sug-

gested that Tyr56 and Asn114 play a critical role in catalysis

but that their contribution to the affinity with KmAtg5 is

restricted, whereas Thr118 contributes to the proper folding

of the catalytic site.
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To examine in vivo significance of the residues, the formation

levels of the Atg12-Atg5 conjugate in atg10D cells expressing

ScAtg10 mutants corresponding to the KmAtg10 mutants

shown above were studied. The Atg12-Atg5 conjugation levels

in atg10D cells expressing ScAtg10 Y73A (corresponding to

KmAtg10 Y56A), G115F and G115W (KmAtg10 T99A) and

H131A (KmAtg10 N114A) decreased compared with those in

atg10D cells expressing wild-type ScAtg10 (Figures S3E and

S3F). All these in vivo results of ScAtg10 are consistent with

the in vitro results of KmAtg10. Although KmAtg10 Thr99, which

is located on b5, is not conserved in ScAtg10 (Figure S1F), the

Atg12-Atg5 conjugation levels decreased when using the

corresponding residue mutants, G115F and G115W, suggesting

that Atg10 b5 is important for the recognition of Atg5 in vivo as

well as in vitro.

The Km value between KmAtg10�AtAtg12b and KmAtg5

calculated from biochemical analyses was �10 mM (Figure 4G),

whereas the Kd value between KmAtg10 and KmAtg5 estimated

from NMR titration experiments was larger than 1 mM (Fig-

ure S2C). These observations suggest that the thioester for-

mation with Atg12 enhances the affinity of Atg10 with Atg5.

Although we could not analyze the interaction between

KmAtg10�AtAtg12b and KmAtg5 because of the instability of

the thioester intermediate, we could detect the direct interaction

between GST-KmAtg5 and AtAtg12b by in vitro pulldown assay

(Figure 4H, lane 5). This interaction was not perturbed by
hts reserved



Figure 4. Biochemical Assays Using KmAtg10 Mutants

(A) AtAtg12b-KmAtg5 conjugate formation under multiturnover conditions.

(B) AtAtg12b-KmAtg5 and AtAtg12b bands in (A) were quantified, and the

AtAtg12b-KmAtg5 conjugation formation (%) was calculated by dividing the

AtAtg12b-KmAtg5 amount by the total AtAtg12b amount. N.D. means not

detected.

(C) KmAtg10�AtAtg12b thioester intermediate formation under single-turn-

over conditions. After generating the KmAtg7�AtAtg12b thioester interme-

diate, 20 mM KmAtg10 mutants were added. The KmAtg10�AtAtg12b inter-

mediate was detected by immunoblotting using anti-AtAtg12b antibodies.

(D) The amount of the KmAtg10�AtAtg12b thioester intermediate in (C) was

quantified and depicted graphically.

(E) AtAtg12b-KmAtg5 conjugate formation under single-turnover conditions.

After generating the KmAtg10�AtAtg12b thioester intermediate, 10 mM

KmAtg5 was added. The AtAtg12b-KmAtg5 conjugate was detected by

immunoblotting using anti-AtAtg12b antibodies.

(F) Initial rates of AtAtg12b-KmAtg5 formation are plotted.

(G) Km (left) and kcat (right) for AtAtg12b-KmAtg5 formation are depicted

graphically.

(H) In vitro pulldown assay between GST-KmAtg5 and AtAtg12b. (Upper)

Shows the Coomassie Brilliant Blue staining of the gel. (Middle and bottom)

Detect the bands of His-KmAtg10 and AtAtg12b using anti-6xHis and anti-

AtAtg12b antibodies, respectively. All biochemical assays were performed in

triplicate. Values and error bars represent means and standard deviations,

respectively.

See also Figure S3.
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KmAtg10 (Figure 4H, lane 6, 7), suggesting that the binding sites

on KmAtg5 for AtAtg12b and KmAtg10 do not overlap with

each other. These results suggested that KmAtg10�AtAtg12b

possesses higher affinity against KmAtg5 than free KmAtg10

by the summation of KmAtg10-KmAtg5 and AtAtg12b-KmAtg5

interactions.

KmAtg5 UblB Interacts with KmAtg10 Using b7
To obtain structural information on KmAtg5, we next determined

its crystal structure at a resolution of 2.5 Å (Figure 5A; Table 2).

The structure of KmAtg5 comprises nine a helices (A-I) and 10

b strands (1-10), which fold into three domains: the N-terminal

ubiquitin-like domain (UblA), the helix-rich domain (HR), and

the C-terminal ubiquitin-like domain (UblB). These three

domains, with the help of the additional N-terminal helix, gather

to form a globular fold. Although this is the first structural report

of Atg5 homologs as a free form, we previously reported the

crystal structure of ScAtg5 as a complex with the N-terminal

region of Atg16 (Matsushita et al., 2007). The KmAtg5 structure,

including the topology and domain organization, is quite similar

to that of ScAtg5. KmAtg5 Lys145 and ScAtg5 Lys149, the

conjugation sites for Atg12, are also well superimposed. These

results also suggest that Atg16-binding does not cause a large

conformational change in Atg5.

We next examined which region of Atg5 is necessary for the

interaction with Atg10. NMR experiments and in vitro mutational

assays identified the important residues of KmAtg10 for the

interaction with KmAtg5. Because these residues are located

within �20 Å from the catalytic cysteine, Cys116, it raised the

possibility that the KmAtg5 residues crucial for the interaction

with KmAtg10 are also located within �20 Å from the acceptor

lysine, Lys145. In addition to the distance restraint, the sequence

conservation and the surface exposure were used as criteria to

prepare KmAtg5 mutants (Figures S4A–S4C). These KmAtg5

mutants were used for in vitro conjugation assays. The

AtAtg12b-KmAtg5 conjugation levels using L127A, V208A, and

Q210A mutants of KmAtg5, especially the Q210A mutant,

decreased compared with that using wild-type KmAtg5 (Figures

5B and 5C). Both Val208 and Gln210 are located on b7 of

KmAtg5 UblB.

To further characterize the Atg10-Atg5 interaction, we per-

formed site-specific crosslinking experiments using a sulfhy-

dryl-to-sulfhydryl crosslinker. To interpret the results more

readily, the C116A mutation was introduced to all mutants

used for the following experiments. We introduced a cysteine

substitution at Thr99 on b5 and at Tyr110 on b6 of KmAtg10

and at Val208 and Gln210 on KmAtg5 b7. When either

KmAtg10 T99C or Y110C was mixed with KmAtg5 V208C or

Q210C and BM(PEG)2, a sulfhydryl-to-sulfhydryl crosslinker,

the crosslinking product was clearly detected only for the pair

between KmAtg10 T99C and KmAtg5 Q210C near 45 kDa (Fig-

ure 5D). This crosslinking product could be detected only in

the case in which all constituents were included (Figure S4D),

suggesting that it is the KmAtg10-KmAtg5 complex (calculated

molecular weight, 48 kDa). Because KmAtg10 Thr99 is located

at the b5, additional mutants at the same strand (KmAtg10

S97C, S101C, and D103C) were prepared and used for cross-

linking experiments with three KmAtg5 mutants (L127C, V208C,

and Q210C) (Figures 5E and S4E), which showed that all
244–1254, July 3, 2012 ª2012 Elsevier Ltd All rights reserved 1249



Figure 5. Biochemical Assays based on the

Crystal Structure of KmAtg5

(A) The overall structure of KmAtg5 is shown. The

additional helix, UblA, HR, and UblB are colored

orange, yellow, green, and pink, respectively. Nine

a helices and ten b strands are denoted A-I and

1-10, respectively. The side chains of Leu127,

Lys145, Gln146, Ala155, Lys156, Val208, Gln210,

and Pro211 are shown with stick models. The side

chain of Lys156 is poorly defined in the electron

density map, so only Cb is shown.

(B) AtAtg12b-KmAtg5 conjugate formation under

multiturnover conditions.

(C) AtAtg12b-KmAtg5 and AtAtg12b bands in (B)

were quantified and the AtAtg12b-KmAtg5

conjugation formation (%) was calculated by

dividing the AtAtg12b-KmAtg5 amount by the total

AtAtg12b amount. N.D. means not detected.

Assays were performed in triplicate. Values and

error bars represent means and standard devia-

tions, respectively.

(D) Initial crosslinking experiments. Where indi-

cated (+) in the table, 10 mM indicated KmAtg10

and 10 mM indicated KmAtg5 were mixed with (+)

or without (-) 100 mM BM(PEG)2 and incubated for

1 hr at room temperature. * indicates unexpected

KmAtg5 crosslinked products.

(E) More detailed crosslinking experiments. Where

indicated (+) in the table, 10 mM KmAtg10 and

10 mM KmAtg5 were mixed with (+) 100 mM

BM(PEG)2 and incubated for 1 hr at room

temperature. * and ** indicate unexpected KmAtg5

crosslinked products. *** indicates unexpected

KmAtg10-KmAtg5 crosslinked products.

(F) Summary of KmAtg10-KmAtg5 interactions.

KmAtg10 b5 and KmAtg5 b7 directly interact

with each other, possibly through forming an

intermolecular b sheet (crosslinked residues are

connected with a broken line). KmAtg5 K145

accesses the catalytic cysteine (Cys116) of

KmAtg10 through the interval between the side

chains of Tyr56 and Asn114 (black arrow).

See also Figure S4.

Structure

Structure of Atg10 and Its Interaction with Atg5
KmAtg10 mutants, especially S101C, were crosslinked with

KmAtg5 Q210C. The S101C mutant was also crosslinked with

KmAtg5 V208C with low efficiency but not with KmAtg5

L127C. Taken together, these results showed that KmAtg10

directly recognizes the second b strand of KmAtg5 UblB (b7)

using b5.

DISCUSSION

Here, we determined the solution structure of Atg10 using

a thermotolerant yeast homolog, KmAtg10, and showed that

Atg10 has an E2-core fold with noncanonical, characteristic

accessories. NMR and biochemical analyses demonstrated

that Atg10 directly interacts with Atg5 using b5 and b6, the

characteristic accessories, and revealed the critical residues

of Atg10 for catalysis. Further, we also determined the crystal

structure of KmAtg5 and performed structure-based bio-

chemical analyses, which clearly demonstrated that KmAtg5

b7 is involved in the interaction with KmAtg10 b5. Figure 5F
1250 Structure 20, 1244–1254, July 3, 2012 ª2012 Elsevier Ltd All rig
summarizes the proposed interactions between KmAtg10 and

KmAtg5.

We previously showed that the Atg5 structure contains two

Ubls, UblA and UblB; however, the functions of these two Ubls

have remained to be elucidated. In this paper, we demonstrated

that UblB is responsible for the interaction with Atg10 using

the second b strand (b7). The second b strand of UblB is topo-

logically equivalent to b2 of Atg8. It has been reported that

Atg8-family proteins utilize their b2 to interact with the Atg8-

family-interacting motif (AIM) in other molecules through forming

an intermolecular b sheet and function in selective autophagy

(Noda et al., 2008, 2010; Yamaguchi et al., 2010). Similarly, it is

possible that KmAtg5 UblB interacts with KmAtg10 by forming

an intermolecular b sheet between KmAtg5 b7 and KmAtg10

b5. To confirm this hypothesis and to uncover the detailed inter-

action between Atg10 and Atg5, further structural approaches,

such as a cocrystallization trial, are needed.

Despite the low sequence similarity between KmAtg10 and

Ubc9, the relative spatial positions of Tyr56 and Asn114 to
hts reserved



Table 2. Data Collection and Refinement Statistics

Data Collection

Space group C2

Beamline Spring8 BL41XU

Cell dimensions

a, b, c (Å) 165.7, 81.9, 158.5

a, b, g (�) 90.0, 92.393, 90.0

Wavelength (Å) 1.000

Resolution range (Å) 50.0–2.40 (2.44–2.40)

Observed reflections 370,566

Unique reflections 83,071

Redundancy 4.5 (2.3)

Completeness (%) 97.9 (99.3)

R merge (I) 0.056 (0.440)

Refinement statistics

Resolution range (Å) 35.15–2.50

Reflection used 69,845

No. of proteins atoms 9,852

No. of heterogen atoms 120

No. of water atoms 77

Rwork/Rfree 0.238/0.268

Rmsd from ideality

Bond length (Å) 0.008

Bond angles (�) 1.4

Values in parentheses refer to the outer shell.
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Cys116 in KmAtg10 are quite similar to those of Tyr87 and

Asp127 to Cys93 in Ubc9 (Figures 1C and 1D). Asn85, Tyr87,

and Asp127 of Ubc9 are responsible for orienting the side chain

of the acceptor lysine (Lys524) of RanGAP1. Biochemical assays

have shown that these residues are responsible for catalysis but

not for binding RanGAP1 (Yunus and Lima, 2006). Our biochem-

ical assays showed that KmAtg10 Tyr56 and Asn114 contribute

to catalysis rather than the affinity with KmAtg5. These facts

suggested that Tyr56 and Asn114 function as a platform for

orienting the acceptor lysine (Lys145) of KmAtg5 in a similar

manner with Tyr87 and Asp127 of Ubc9, although their topolog-

ical locations are quite distinct. Most E2 enzymes have a highly

conserved Asn residue, like Ubc9 Asn85, which functions as

an oxyanion hole that stabilizes the transition state during con-

jugation (Wu et al., 2003). However, Atg10 homologs do not

have an Asn residue equivalent to Ubc9 Asn85. KmAtg10

Asn114 is conserved as Asn/His among Atg10 homolog, sug-

gesting that these Asn/His residues might function as an oxyan-

ion hole in addition to the role of orienting the acceptor lysine.

Further structural and biochemical studies are required for

characterizing the oxyanion hole of Atg10.

The kcat value for AtAtg12b-KmAtg5 conjugation catalyzed

by KmAtg10 (0.045 s�1) was much lower than that for SUMO-

RanGAP1 conjugation mediated by Ubc9 (0.66 s�1) but was

comparable with those for some other E2-mediated conjuga-

tion reactions, such as Ubc9-mediated SUMO-p53 conjugation

(0.021 s�1) and RAD6-mediated Ub-histone H2A conjugation

(0.032 s�1) (Figure 4G) (Haas et al., 1991; Yunus and Lima,

2006). The abundance of Atg5 was estimated to be 606 mole-
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cules per cell, which was considerably small compared with

most other proteins (Ghaemmaghami et al., 2003). So, it may

not be necessary for Atg10 to possess a higher E2 activity,

although we cannot exclude the possibilities that some unknown

factor(s) might enhance the E2 activity of Atg10 in vivo. Although

the Kd value of the KmAtg10-KmAtg5 interaction was sig-

nificantly large (�1.5 mM), the apparent Km value of the

AtAtg12b-KmAtg5 conjugation reaction was small enough for

an E2-mediated reaction (�10 mM), which appeared to be

accomplished through the direct interaction of KmAtg5 with

both KmAtg10 and AtAtg12b (Figure 4H). Thus, Atg10 recog-

nizes its substrate Atg5 using both its characteristic accessories

(b5, b6) and the thioester-linked modifier molecule (Atg12) and

accomplishes the conjugation reaction without E3. Character-

ization of Atg12-Atg5 interaction will give us further insights

into the reaction mechanism.

Another autophagy-related E2, Atg3, also possesses two

b strands that are topologically equivalent to b5 and b6 of

Atg10 (Figures S1C–S1E) (Yamada et al., 2007). Moreover, it

was also reported that Atg3�Atg8 thioester intermediate has

higher affinity against PE-containing liposomes than free Atg3

(Oh-oka et al., 2008). So, it is interesting to determine whether

Atg3 also utilizes these b strands and the modifier, Atg8, in

recognizing its sole target, PE. Atg3 has catalytic-site residues

similar to Atg10; Atg3 conserves Tyr and His residues in the

positions equivalent to KmAtg10 Tyr56 and Asn114, respec-

tively, and does not conserve a residue equivalent to Ubc9

Asn85. Further structural and biochemical studies on autoph-

agy-related E2s, Atg10 and Atg3 will contribute to the elucida-

tion of both specific and general mechanisms of E2 family

enzymes and uncover how these unique E2s regulate

autophagy.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Plasmid construction, expression, and purification of AtAtg12b were per-

formed as described previously (Suzuki et al., 2005). The KmAtg10 and

KmAtg5 genes were amplified by PCR and cloned into either pGEX6P-1 (GE

Healthcare, Waukesha, WI, USA) or pPROEX-HTb (Invitrogen, Carlsbad, CA,

USA). The KmAtg7 gene was amplified by PCR and cloned into pGBHPS

(Kobashigawa et al., 2009). Mutations leading to specific amino acid sub-

stitutions were introduced by PCR-mediated site-directed mutagenesis. All

constructs were sequenced to confirm their identities and were expressed in

Escherichia coli BL21 (DE3).

Cells were lysed and glutathione S-transferase (GST)-fused Atg proteins

were purified by affinity chromatography using a glutathione-Sepharose 4B

column (GE Healthcare). GB1-His-KmAtg7 and His-KmAtg5 were purified by

affinity chromatography using a Ni-NTA column (Qiagen, Venlo, the

Netherlands). GST and GB1-His were excised from KmAtg10, KmAtg5, and

KmAtg7, respectively, with a PreScission protease. (GE Healthcare). KmAtg10

and KmAtg5 were further purified with a glutathione-Sepharose 4B column to

remove GST followed by a Superdex75 gel filtration column. His-KmAtg10 and

His-KmAtg5 was further purified by a Superdex75 gel filtration column.

KmAtg7 was further purified with a Ni-NTA column to remove GB1-His fol-

lowed by a Superdex 200 gel filtration column. For in vitro pulldown assay,

GST-KmAtg5 was further purified by a Superdex200 gel filtration column.

For NMR spectrometry, 15N-labeled and 13C- 15N-double-labeled proteins

were prepared by growing E. coli in M9 media using 15NH4Cl and
13C-glucose

as the sole nitrogen and carbon sources, respectively. 2H- 15N-double-labeled

proteins for the transferred cross-saturation experiment were prepared by

growing E. coli in 99.8% D2O M9 media using 15NH4Cl and 97% 2H6-glucose

as the sole nitrogen and carbon sources.
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Crystallization and Data Collection

A crystal of KmAtg5 was obtained at 293 K by sitting drop vapor diffusion

against a well solution of 1.5–1.8M (NH4)2SO4, 1%–4%PEG400, 0.1MHEPES

(pH 6.8) and 10–15 mg/ml KmAtg5. The crystal was cryoprotected through the

addition of 15% glycerol (v/v), then flash-cooled, and kept in a stream of

nitrogen gas at 100 K during data collection. Diffraction data were collected

at SPring8 BL41XU beamline at the wavelength of 1.000 Å and then processed

with the HKL2000 program suite (Otwinowski and Minor, 1997). Refinement

and data statistics are provided in Table 2. Molecular replacement was per-

formed using the programs BALBES (Long et al., 2008) and MOLREP (Vagin

and Teplyakov, 1997) in the CCP4 software suite (Winn et al., 2011). The crystal

structure of S. cerevisiae Atg5 complexed with the N-terminal region of Atg16

(Protein Data Bank code 2DYO) was used as a search model. Manual building

and modification was performed with the molecular modeling program COOT

(Emsley et al., 2010), followed by iterative rounds of refinement using the CNS

program (Brünger et al., 1998). There are no residues that lie in disallowed

regions in a Ramachandran analysis.

NMR Spectroscopy

NMR experiments were carried out at 298 K on a Varian UNITY INOVA 600

spectrometer. Sample of 0.5 mM 13C, 15N-labeled KmAtg10 dissolved in

50 mM phosphate buffer (pH 6.8), 100 mM NaCl, and 5 mM dithiothreitol

was prepared and 1H, 13C, 15N resonance assignments of KmAtg10 were

performed using the following sets of spectra: [1H- 15N] HSQC, HNCO,

HN(CO)CA, HNCA, HN(CA)HA, HBHA(CO)NH, [1H- 13C] HSQC, C(CO)NH,

CCH-TOCSY, HCCH-TOCSY, HbCbCgCdHd, and HbCbCgCdCeHe. Spectra

were processed by NMRpipe (Delaglio et al., 1995), and data analysis was

conducted using the Sparky program (Kneller and Goddard, 1997). Interproton

distance restraints for structural calculations were obtained from 13C-edited

NOESY-HSQC and 15C-edited NOESY-HSQC spectra using a 75 ms mixing

time.

The structure was calculated using the CYANA 2.1 software package (Herr-

mann et al., 2002). As an input for the final calculation of the three-dimensional

structure of KmAtg10, 3282 distance and 225 dihedral angle restraints pre-

dicted by TALOS program (Cornilescu et al., 1999) were used. At each stage,

100 structures were calculated using 30,000 steps of simulated annealing, and

a final ensemble of 20 structures was selected based on CYANA target

function values. The sample solution of the 0.2 mM 15N-labeled KmAtg10

complexed with a 1.25 molar equivalent of nonlabeled KmAtg5 dissolved in

20mMphosphate buffer (pH 6.8) and 100mMNaCl was prepared for chemical

shift perturbation. Chemical shift perturbations (Dppm) were calculated using

the following equation: Dppm = [(DdHN)2 + (DdN/5)2]1/2, where DdHN and DdN

are the differences in chemical shift between the free and complex states

along the 1H and 15N axes, respectively.

The transferred cross-saturation experiment was carried out using the

pulse scheme (Takahashi et al., 2000) at 293 K on a Varian UNITY INOVA

800 spectrometer. Sample of 0.80 mM 2H, 15N-labeled KmAtg10 in complex

with 0.5 equivalent of the nonlabeled KmAtg5 was dissolved in 50 mM

phosphate buffer (pH 6.8), 100 mM NaCl, and 5 mM 2H-labeled dithiothreitol

containing 10% H2O/90% D2O. Saturation of the aliphatic protons of KmAtg5

was made using the WURST-2 decoupling scheme (Kupce and Wagner,

1995). The saturation frequency was set at 0 ppm, and the maximum radio-

frequency amplitude was 0.26 kHz for WURST-2. The measurement time

was 14 hr, with a relaxation delay of 1.0 s and a saturation time of 2.0 s. To eval-

uate the effect of the residual aliphatic protons within KmAtg10, a transferred

cross-saturation experiment without KmAtg5 was also performed under the

same conditions. Spectra were processed by NMRpipe (Delaglio et al.,

1995), and data analysis was performed using the Sparky program (Kneller

and Goddard, 1997). The intensity ratio was calculated as sat (+) / sat (-).

In Vitro Conjugation Assays

In vitro conjugation assays were performed as previously described (Fujioka

et al., 2008; Yunus and Lima, 2006, 2009). For KmAtg10�AtAtg12b thioester

intermediate formation under multiturnover conditions, 10 mM KmAtg7,

10 mM KmAtg10, and 10 mM AtAtg12b were incubated in the reaction buffer

containing 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM ATP, 1 mM MgCl2,

and 0.2 mM dithiothreitol at 303 K for 15 min. For KmAtg10�AtAtg12b

thioester intermediate formation under single-turnover conditions, the
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KmAtg7�AtAtg12b intermediate was generated by incubating 10 mM

KmAtg7 and 10 mM AtAtg12b at 310 K for 20 min in the reaction buffer as

mentioned above, then the reaction mixture was diluted 50-fold in buffer

containing 50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 50 mM EDTA, 0.2 mM

dithiothreitol, and 20 mM KmAtg10 and incubated at room temperature for

15 min. The reaction was stopped by mixing with SDS-PAGE sample buffer.

Nu-PAGE 4%–12% Bis-Tris gels (Invitrogen) were used for detecting the

KmAtg10�AtAtg12b thioester intermediate.

For AtAtg12b–KmAtg5 conjugate formation under multiturnover conditions,

10 mM KmAtg7, 10 mM KmAtg10, 10 mM KmAtg5, and 10 mM AtAtg12b

were incubated in the reaction buffer as mentioned above at 303 K for 2 hr.

The reaction was stopped by mixing with SDS-PAGE sample buffer and

proteins were detected by CBB staining. Single-turnover assays for wild-

type KmAtg10 and KmAtg10 mutants were carried out as described below.

The KmAtg10�AtAtg12b intermediate was generated by incubating 1 mM

KmAtg7, 10 mM KmAtg10 mutants, and 7.5 mM AtAtg12b at 310 K for

20 min in the reaction buffer as mentioned above. The reaction mixture was

then diluted 10-fold in buffer containing 50 mM Tris-HCl (pH 8.0), 100 mM

NaCl, 50 mM EDTA, 0.2 mM dithiothreitol, and His-KmAtg5 at various

concentrations ranging from 0.5–80 mM and incubated at room temperature

for 20 s to 20 min. Protein bands were detected using anti-AtAtg12b anti-

bodies. All data based on chemiluminescence were measured within the

linear range of the detection method. The images were obtained by Fujifilm

LAS4000 imager and quantified using ImageJ software (Abramoff et al.,

2004). Initial reaction velocities were calculated at various KmAtg5 concentra-

tions, where the data points were in the linear range. Rates at the 20 and

50 mM wild-type KmAtg5 were estimated with a single time point at 20 s

because rates deviated from linearity at later time points. Apparent Km

and kcat for AtAtg12b-KmAtg5 conjugation were determined from nonlinear

regression analysis by fitting the data to Michaelis-Menten equation using

GraphPad Prism software version 5.03 for Windows (GraphPad Software,

La Jolla, CA, USA).

For in vitro pulldown assay, after 10 mMGST-KmAtg5 or GST was incubated

with glutathione-Sepharose 4B beads at room temperature, 10 mM His-

KmAtg10 (Figure S2A) or 10 mM AtAtg12b with/without His-KmAtg10 (Fig-

ure 4H) were loaded to the beads and they were further incubated at room

temperature. Washing beads with PBS three times, proteins were eluted

with buffer containing 10 mM glutathione and 50 mM Tris-HCl (pH 8.0). The

eluates were subjected to Nu-PAGE followed by western blotting using anti-

6xHis or anti-AtAtg12b antibodies.

Structural Comparison among E2-like Proteins

The structural comparisons between the solution structure of KmAtg10 and

other E2 enzymes, Atg3 (2DYT) and Ubc9 (1U9A), were performed using the

DALI search engine. All images are drawn by PyMOL (DeLano, 2002). The

catalytic structures of KmAtg10, Atg3, and Ubc9-RanGAP1 were overlaid by

minimizing the root-mean-square difference of the Ca atom of KmAtg10

Tyr56, Asn114, and Cys116 with that of the equivalent residue (Tyr87,

Asp127, and Cys93 of Ubc9) using the CNS program.

In Vivo Analyses

Yeast atg10D (10D, ScUniv-12) cells were transformed with the pRS316

centromeric vector (vec), the pRS426 multicopy vector (2m, vec), or indicated

plasmids to express wild-type ormutant forms of ScAtg10-2xHA, respectively.

Cells were grown in SD/CA(-Ura) medium (Growing), and total cell lysates

were prepared and subjected to immunoblotting with anti-HA (3F10, Roche,

Indianapolis, IN, USA), anti-Atg12, anti-Atg8, and anti-Ape1 antibodies,

respectively.

Crosslinking Experiments

Samples containing 10 mM KmAtg10 and 10 mM KmAtg5 were incubated with

or without 100 mM BM(PEG)2 (Thermo Fisher Scientific, Rockford, IL, USA) in

buffer containing 50 mM HEPES (pH 7.0), 100 mM NaCl, 10 mM DTNB, and

5 mM EDTA at room temperature for 1 hr. The reaction was quenched by add-

ing 10 mM dithiothreitol to remove the excess nonreacted reagent and incu-

bated at room temperature for 15 min. The reaction was stopped by mixing

with nonreducing SDS-PAGE sample buffer and the samples were subjected

to SDS-PAGE followed by CBB staining.
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