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SUMMARY

TRP cation channels functionas cellular sensors inuni-
and multicellular eukaryotes. Despite intensive study,
the mechanisms of TRP channel activation by chemi-
cal or physical stimuli remain poorly understood. To
identify amino acid residues crucial for TRP channel
gating, we developed an unbiased, high-throughput
genetic screen in yeast that uncovered rare, constitu-
tively active mutants of the capsaicin receptor, TRPV1.
We show that mutations within the pore helix domain
dramatically increase basal channel activity and
responsiveness to chemical and thermal stimuli. Muta-
tion of corresponding residues within two related
TRPV channels leads to comparable effects on their
activation properties. Our data suggest that conforma-
tional changes in the outer pore region are critical for
determining the balance between open and closed
states, providing evidence for a general role for this
domain in TRP channel activation.

INTRODUCTION

Members of the transient receptor potential (TRP) family of nonse-

lective cation channels participate in a wide variety of physiolog-

ical processes in organisms ranging from fungi to humans (Clap-

ham, 2003; Dhaka et al., 2006). TRP channels respond to such

diverse agonists as hypertonicity in yeast, light-evoked phospho-

lipase C (PLC) activation in the Drosophila photoreceptor, and

noxious chemical and thermal stimuli in the mammalian somato-

sensory system. Accordingly, spontaneous loss- and gain-of-

functionmutations in TRP channels underlie disease states result-

ing from decreased or increased cation influx, respectively (Nilius,

2007). TRP channels belong to the six-transmembrane-domain

(6TM, S1–S6) cation channel superfamily that includes depolar-

ization-activated K+, Na+, and Ca2+ channels, as well as cyclic-

nucleotide-gated (CNG) and hyperpolarization-activated (HCN)

channels. TRP channels fall into several subfamilies, including va-

nilloid (V), canonical (C), and melastatin (M) groups, with most

members suspected to form tetramers in vivo. Based on hydrop-

athy predictions, each subunit contains intracellular N and C

termini and a membrane-reentrant pore loop between S5 and

S6. As a class, TRP channels bear resemblance at the level of

transmembrane topology but show remarkably little primary se-

quence homologywithin and across subfamilies (Clapham, 2003).
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TRP channels respond to an array of stimuli, including physical

and chemical agonists (Clapham, 2003; Dhaka et al., 2006). For

example, TRPV1, the founding member of the vanilloid subfam-

ily, is the receptor for capsaicin (the pungent ingredient in ‘‘hot’’

chili peppers) but also responds to extracellular protons, bioac-

tive lipids, and noxious heat (>43�C) (Caterina et al., 1997; Jordt

et al., 2003; Tominaga et al., 1998). Like many other members of

the TRP channel family, TRPV1 can also be modulated by PLC-

coupled signal transduction pathways (Chuang et al., 2001;

Lukacs et al., 2007; Prescott and Julius, 2003). However, the mo-

lecular mechanisms underlying TRP channel activation, ranging

from stimulus detection to the regulation of channel opening

(gating), are poorly understood. This stands in contrast to other

6TM channels, most notably voltage-activated K+ channels,

which have been probed in great detail using biophysical and

crystallographic methods (Tombola et al., 2006; Yellen, 1998).

For voltage-gated channels, an important clue to their

common activation mechanism came from visual inspection of

linear protein sequences, which revealed a discrete domain

(the positively charged S4 helix) as a likely universal candidate

for translating changes in plasma membrane voltage into chan-

nel opening (Tombola et al., 2006; Yellen, 1998). In contrast,

TRP channels are activated by a diversity of chemical and phys-

ical stimuli for which corresponding functional motifs are not

readily apparent in the channel polypeptide (Clapham, 2003),

making it challenging to gain insight into the gating process. Fur-

thermore, TRP and voltage-gated channels are not only function-

ally divergent but also show sparingly little sequence similarity.

Thus, the use of previously developed structural and mechanis-

tic models to ascertain TRP channel function is rather limited.

This leaves unanswered the important question of whether any

unifying mechanistic principles underlie TRP channel gating.

While previous reports have delineated molecular determi-

nants for agonist binding and activation in several TRP family

members, including TRPV1 (Jordt and Julius, 2002; Jordt

et al., 2000; Jung et al., 2002), few if any conserved structural

elements controlling TRP channel gating have been reported.

The difficulty in pinpointing critical gating domains stems, in

part, from the challenge of conducting mutational analyses that

efficiently sample a large sequence space. Conventional ion

channel structure-function studies generally entail the construc-

tion and testing of channel mutants one at a time; such studies

are low throughput, precluding an unbiased examination in

which multiple substitutions at each sequence position are eval-

uated for functional alterations. Some studies have exploited

amino acid polymorphisms between functionally divergent TRP

channel family members to narrow down blocks of sequence
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that contain determinants of agonist activation (via analysis of chi-

meric channels) (Chuang et al., 2004; Jordt and Julius, 2002), but

this methodology is poorly suited to uncovering core structural el-

ements that are expected to show high levels of conservation

among TRP channels. Such limitations can be partially overcome

by using robotic methods to sample large numbers of individual

mutants via high-throughput functional assays (Bandell et al.,

2006; Decaillot et al., 2003; Zhou et al., 2007). Alternatively, ge-

netic strategies based on simple life-or-death readouts (Loukin

et al., 1997; Minor et al., 1999; Ou et al., 1998) could permit selec-

tion of functionally interesting channel mutants, but such a meth-

odology has not been applied to mammalian TRP channels.

Here, we describe the identification and characterization of

a critical component of the TRP channel gating machinery via un-

biased genetic screening of a randomly generated population of

TRPV1 mutants. We conducted this high-throughput screen on

mammalian TRPV1 heterologously expressed in the budding

yeast Saccharomyces cerevisiae, whose superior genetics

allows for the efficient isolation of constitutively active channel

alleles. Our study reveals that gain-of-function substitutions in

the pore helix of TRPV1 dramatically affect channel activation,

establishing an important role for this domain in TRPV1 function-

ality. We extend these observations to two other members of the

TRPV subfamily, suggesting that the pore helix is a key regula-

tory domain that plays a conserved role in the gating of at least

a subset of excitatory TRP channels.

RESULTS

Functional Expression of the Capsaicin Receptor in
Yeast
Persistent activation of native or recombinant vanilloid receptors

leads to a dramatic decrease in mammalian cell viability due to

overload with cations (Caterina et al., 1997; Jancso et al.,

1977; Wood et al., 1988). We reasoned that if TRPV1 forms func-

tional channels upon heterologous expression in yeast, then ex-

posure to capsaicin should be fatal. Indeed, yeast transformed

with TRPV1 grew robustly on standard solid medium but failed

to grow on medium containing capsaicin (Figure 1A). Capsai-

cin-evoked toxicity was concentration dependent with half-max-

imal death occurring in the high nanomolar range (data not

shown), consistent with established dose-response profiles in

mammalian cells (Gunthorpe et al., 2000; Jerman et al., 2000;

Oh et al., 1996). In contrast, capsaicin did not change the viability

of a strain harboring a Kir2.1 inward rectifier K+ channel (Minor

et al., 1999) (Figure 1A), suggesting that capsaicin-evoked toxic-

ity is mediated by TRPV1 and is not simply an artifact of express-

ing a foreign cation channel. Along these lines, we found that le-

thality was fully suppressed by a TRPV1 pore blocker, ruthenium

red (10 mM) (Figure 1A), or significantly attenuated by an inverse

agonist, capsazepine (50 mM) (data not shown). We have previ-

ously described a hypersensitive TRPV1 mutant in which an

inhibitory C-terminal putative PIP2 binding module has been de-

leted, leading to activation at subthreshold agonist concentra-

tions or ambient temperatures (Prescott and Julius, 2003).

Consistent with such functional properties, we found that expres-

sion of this potentiated mutant (TRPV1 D777-820) was lethal to

yeast even in the absence of capsaicin, but growth was restored
to wild-type levels in the presence of ruthenium red (Figure 1B).

Furthermore, we found that the lethality of capsaicin was aug-

mented when the yeast medium was supplemented with higher

levels of sodium (data not shown), suggesting that, as in mamma-

lian cells, toxicity stems from a rise in intracellular cation concen-

trations to intolerable levels.

Our growth assay demonstrates that sustained TRPV1 activa-

tion produces similar long-term effects on survival of yeast and

metazoan cells. Furthermore, activation of TRPV1 in yeast by

thermal or chemical stimuli occurs on a physiologically relevant

timescale, shown by visualizing TRPV1-mediated cobalt accu-

mulation as a direct, short-term assay of channel activity. Stim-

ulus-dependent uptake of cobalt chloride into TRPV1-express-

ing cells is observed following addition of ammonium sulfide,

which generates a readily visible black cobalt sulfide precipitate

(Winter, 1987; Wood et al., 1988). In TRPV1-expressing yeast,

pellets from nonstimulated cells appeared off-white, but be-

came deep black within 5 min of capsaicin treatment (Figure 1C),

yielding a dose-response relationship consistent with previous

functional assays (EC50 �70 nM) (Figure 1D). As in the cell death

assay, Kir2.1-transformed cultures did not respond to cap-

saicin, and capsaicin stimulation of TRPV1 in the absence of co-

balt produced no color change. Similarly, TRPV1-expressing

yeast responded robustly to a rise in bath temperature in

a manner that closely parallels heat-evoked channel activation

in electrophysiological studies (Figures 1C and 1E) (Caterina

et al., 1997; Tominaga et al., 1998). Thus, our cobalt uptake as-

say illustrates that TRPV1 forms functional channels in yeast

that are reminiscent of native or cloned channels expressed in

vertebrate cells.

Unbiased Forward Genetic Screen Reveals
Gain-of-Function Mutations
Constitutively active TRPV1 mutants might harbor deficits in

some aspect of channel activation, and a comprehensive list of

such mutations could provide valuable information about the lo-

cation of the channel gate. We used the activity-dependent death

phenotype described above to identify such TRPV1 alleles that,

unlike the wild-type channel, conferred significant toxicity even

under basal conditions (i.e., in the absence of capsaicin at

30�C). To execute this screen, we introduced a library of randomly

mutagenized TRPV1 cDNAs into yeast and plated transformants

onto medium containing ruthenium red, thereby blocking TRPV1

to allow for growth of all cells independent of channel activity. Re-

sulting colonies were replica plated onto medium lacking ruthe-

nium red to unmask the lethality of any constitutively active chan-

nels (Figure 2A). Colonies showing reduced survival in the

absence of ruthenium red were picked from the original plate

and retested to confirm their phenotype.

From this screen, we recovered TRPV1 alleles showing a range

of toxic effects (Figure 2B). Out of approximately 46,000 clones

examined, 46 reproducibly exhibited growth impairment in the

absence of ruthenium red, yielding an overall hit rate of 0.1%

(see Table S1 available online). This is in reasonable agreement

with the hit rate obtained from a luminometry-based screen for

gain-of-function alleles in the yeast TRP channel Yvc1p (Su

et al., 2007; Zhou et al., 2007) and is consistent with the general

principle that gain-of-function mutations in channels are rare.
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Figure 1. Mammalian TRPV1 Forms Functional Channels in Yeast

(A) Serial dilution assay for growth of yeast strains transformed with plasmids encoding mouse Kir2.1 or rat TRPV1. Yeast were resuspended to approximately the

same density, spotted (from left to right) on indicated media and allowed to grow at 30�C for 3 days.

(B) Serial dilution assay for wild-type TRPV1 versus TRPV1 D777-820, grown as described in (A).

(C)Representative cobaltuptake assayperformedwithyeastexpressing TRPV1 or Kir2.1.Cellswere exposedto10mM capsaicin (at30�C)orelevatedbath temperature

(36�C–48�C) and cobalt accumulation visualized in cell pellets collected in microtiter wells.

(D) Intensity of cobalt sulfide staining was determined using pixel quantitation (arbitrary units), yielding a capsaicin concentration response relationship that could be fit

with a sigmoid function.

(E) Quantitation of TRPV1 (black) or Kir2.1 (green) temperature responsiveness in yeast using the cobalt uptake assay, revealing a TRPV1 thermal activation threshold

near 40�C.
Our set of TRPV1 gain-of-function alleles defined a total of

30 unique mutations at 25 amino acid positions (Table S2). Inter-

estingly, recovered mutations were clustered within the pre-

sumptive pore and cytoplasmic termini (Figure 2C). Only two

gain-of-function mutations were recovered within the first four

transmembrane domains, even though sequencing of randomly
364 Neuron 58, 362–373, May 8, 2008 ª2008 Elsevier Inc.
selected library clones showed equal mutagenic frequency

throughout the coding region. Given the architectural similarity

between TRP and voltage-gated channels and the critical role

played by the first four transmembrane helices in voltage sensi-

tivity, we were surprised to observe a relative paucity of gain-

of-function alleles within this module.
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Electrophysiological Analysis Reveals a Range
of Functional Alterations
We used electrophysiological methods to directly characterize the

functional properties of mutant channels when expressed in Xen-

opus oocytes. For all channels, basal and proton-evoked currents

were assessed at pH 7.4 and 6.4, respectively, and normalized to

a saturating concentration (10 mM) of capsaicin. As expected, wild-

type TRPV1 responded strongly to capsaicin but displayed negli-

gible current under basal conditions or in response to pH 6.4

(Figure 3A), which is just at the threshold concentration required

for proton-evoked activation at room temperature (Chuang et al.,

2001; Jordt and Julius, 2002; Tominaga et al., 1998). In contrast,

eight of the recovered mutants displayed a significant response

to pH 6.4, although no basal current was detected at pH 7.4 (Fig-

ures 3B and 3E). We labeled such mutants as ‘‘potentiated.’’ Fur-

thermore, a second group of mutants displayed a more extreme

phenotype, manifest as large basal currents at pH 7.4 (R15% of

the maximum capsaicin-evoked response) (Figures 3C–3E). These

basal currents showed characteristic outward rectification and

block by ruthenium red, indicating that they are carried by

TRPV1. We refer to these mutants as ‘‘constitutively active.’’

Among the constitutively active channels, residues K155 and

K160 map to a single N-terminal ankyrin repeat domain, while

Figure 2. Yeast Genetic Screen Identifies

Gain-of-Function TRPV1 Alleles

(A) Outline of the screening procedure: yeast were trans-

formed with the randomly mutagenized TRPV1 library and

grown for 2 days following replica plating. Subsequently, toxic

alleles were identified and picked from the ruthenium red plate

for secondary analysis and plasmid rescue.

(B) Serial dilution assays of cultures expressing wild-type

TRPV1 or representative mutants, illustrating the range of

toxic phenotypes recovered from the yeast screen.

(C) Each allele recovered in the screen was mapped onto a

topology diagram of TRPV1. Red or green spheres indicate lo-

cation of mutations causing strong or weak toxic phenotypes,

respectively. N-terminal ankyrin repeats, transmembrane heli-

ces (S1–S6), and putative C-terminal PIP2 binding domain are

shown. Mutants exhibiting high constitutive activity in electro-

physiological assays (see Figure 3) are labeled for reference.

M581T and F640L are in the S5-pore-S6 region

(Figure 2C). Interestingly, the two N-terminal lysine

residues have been previously shown to bind cyto-

plasmic ATP and calmodulin (Lishko et al., 2007).

Lysine-to-alanine substitutions at these positions

abolish interaction with ATP or calmodulin and re-

duce tachyphylaxis (the process by which repeated

channel stimulation evokes progressively weaker

responses), thereby decreasing efficiency of chan-

nel closure upon repeated stimulation. These mu-

tants also display hypersensitivity to capsaicin

(Lishko et al., 2007). We asked whether the gluta-

mate substitutions identified by our screen are

mechanistically equivalent to the previously de-

scribed alanine substitutions. Indeed, both sets of

substitutions led to comparable toxicity in yeast

(Figure S1A) and high basal currents in oocytes

(Figure S1B), presumably reflecting constitutive activity and/or

a failure to desensitize. In any case, our independent identifica-

tion of these mutations validates the ability of the yeast screen

to pinpoint functionally significant TRPV1 residues.

In summary, three functionally distinct classes of TRPV1 al-

leles arose from our screen, ranging from mutations causing little

perturbation of basal or stimulus-evoked activity to those caus-

ing dramatic constitutive activation. Interestingly, not all mutants

arising from the screen exhibit marked electrophysiological

phenotypes in oocytes. This disparity could reflect physiological

differences between yeast and metazoan systems, such as

transmembrane voltage (highly negative in yeast), growth

temperature and extracellular pH, or differential expression of

regulatory factors. Nonetheless, the screen has clearly enriched

for mutants with heightened agonist sensitivity, consistent with

our goal of identifying substitutions rendering TRPV1 constitu-

tively active or hypersensitive.

F640L Renders Channels Hypersensitive
to Thermal and Chemical Stimuli
Among the mutants displaying high constitutive activity in

oocytes, we focused on F640L for three main reasons. First,

F640L displayed the strongest basal channel activation of all
Neuron 58, 362–373, May 8, 2008 ª2008 Elsevier Inc. 365
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Figure 3. Mutants Recovered from the

Yeast Screen Display Altered Electrophysi-

ological Properties

Representative current traces from two-electrode

voltage-clamp (TEVC, +80 mV) recordings of oo-

cytes expressing wild-type TRPV1 (A), potentiated

mutants (B), or constitutive mutants (C). Oocytes

were challenged with protons (pH 6.4), capsaicin

(10 mM), or ruthenium red (10 mM). (D) Quantitation

of basal currents for all TRPV1 mutants exhibiting

constitutive activity (normalized to a saturating

capsaicin response; mean ± SEM, n R 3 per con-

struct). Currents in the presence of ruthenium red

(10 mM) were used as baseline. For wild-type

TRPV1, >90% block of capsaicin-evoked currents

was achieved after 30 s of ruthenium red treat-

ment, and the wild-type value of Ibasal/Icap was

subtracted from all measurements. (E) Quantita-

tion of pH 6.4 responses (normalized to a saturat-

ing capsaicin response) for all TRPV1 mutants

exhibiting constitutive or potentiated activity.

Data represent mean ± SEM, n R 3 per construct.
mutants examined (Figures 3C and 3D), suggestive of a dramatic

alteration in TRPV1 function. Second, F640 lies within the pre-

sumptive TRPV1 outer pore, a region that remains relatively un-

explored with regard to TRP channel gating. Finally, the F640L

allele displayed a unique phenotype in regard to basal versus

proton-evoked currents, as described in more detail later.

We examined the biophysical properties of the F640L mutant by

patch-clamp recording of transfected HEK293 cells. Consistent

with its yeast phenotype, the F640L mutant conferred substantial

toxicity when expressed in HEK293 cells, characterized by ne-

crotic morphology similar to that observed in cells expressing wild-

type TRPV1 after prolonged exposure to capsaicin (Caterina et al.,

1997) (Figures 4A and 4B). Inclusion of ruthenium red (3 mM) in the

culture medium significantly attenuated the death of F640L-

expressing cells, permitting electrophysiological analysis.

We examined the sensitivity of F640L mutant channels to

chemical and thermal stimuli. Inside-out membrane patches

from HEK293 cells expressing wild-type TRPV1 showed small

but measurable basal activity at room temperature that exhibited

strong outward rectification (i.e., negligible inward current at�60

mV), consistent with previous reports (Chuang et al., 2001; Matta

and Ahern, 2007). Subsequent challenge of these cells with a sat-

urating dose of capsaicin (10 mM) elicited a large (�200-fold)

induction of the basal current (Figure 4C). In contrast, inside-

out patches from the F640L mutant routinely displayed large

basal currents with a substantial inward component (Figure 4D).

Despite this difference in basal activity, addition of capsaicin at

saturating concentrations produced currents of similar magni-

tude to those evoked in patches containing wild-type channels.

We found no significant difference in either the single-channel

conductance or the relative permeabilities for Na+, K+, and

Ca2+ ions when comparing wild-type and F640L mutant chan-

nels (Figure S2), showing that the F640L mutation affects gating

rather than permeation properties.
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Consistent with a hypersensitive gating mechanism, we found

that the F640L mutant displayed a 35-fold leftward shift in the

capsaicin dose-response curve compared to the wild-type recep-

tor (EC50 = 1.91 ± 1.26 and 65.62 ± 4.03 nM, respectively) (Fig-

ure 5A). Interestingly, mutant channels also exhibited a lower

Hill coefficient (0.33 ± 0.08 versus 2.06 ± 0.20 for wild-type

TRPV1), indicative of decreased agonist cooperativity. Impor-

tantly, the basal F640L-mediated current was suppressed by

the inverse agonist capsazepine (Figure 5D), demonstrating that

the high constitutive activity is not due to an inability of the chan-

nel to close. This mutant also exhibited robust currents well below

room temperature, corresponding to a dramatic shift in thermal

activation threshold (Figure 5B) that resembles a proton-potenti-

ated response in cells expressing wild-type TRPV1 (Jordt et al.,

2000; Tominaga et al., 1998). Because the basal responsiveness

of the F640L mutant was reduced with decreased ambient tem-

perature, the mutant phenotype is unlikely to result from a defect

in temperature detection per se, but rather from an independent

mechanism that more generally affects gating. Our data suggest

that the gating machinery remains intact in the F640L mutant, but

the equilibrium has shifted to favor the open state.

F640L Mimics and Occludes Proton-Mediated Channel
Potentiation
In contrast to all other mutants in the high constitutive activity

group, only the F640L basal currents were not further potenti-

ated under low pH conditions (Figure 3E). Nonetheless, addition

of capsaicin to F640L-expressing cells led to a marked increase

in current, demonstrating that F640L channels are not maximally

open in the basal state (Figures 3C and 4D). As such, the failure

to observe proton-evoked potentiation likely reflects a perturba-

tion in the gating mechanism through which protons exert their

physiological regulatory effect on TRPV1.
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In mammalian cell patch-clamp experiments, we found that,

although the wild-type channel was potentiated by exposure to

pH 6.2, the F640L current was completely unaffected under

these conditions (Figures 5C–5E), demonstrating a defect in pro-

ton-evoked potentiation. We also observed that a weakly alka-

line solution (pH 8.2) failed to reduce the F640L-mediated basal

current, even though the same conditions suppressed currents

evoked by a moderate dose of capsaicin (70 nM) in cells ex-

pressing the wild-type channel (data not shown). However,

higher doses of protons could activate the F640L mutant in

a manner similar to the wild-type channel (pH50 = 5.60 ± 0.03

versus 5.72 ± 0.19 for wild-type and F640L mutant channels,

respectively), illustrating that while the mutant has lost the ability

to be potentiated within a certain pH range, its proton activation

has not been completely ablated.

Taken together, our data show that the F640L mutation en-

hances sensitivity to heat and capsaicin by shifting the stimu-

lus-response relationships of the channel leftward while also de-

creasing apparent cooperativity of gating. Indeed, this phenotype

closely resembles that of wild-type TRPV1 channels operating

under acidic conditions. In contrast, the sensitizing effects of

extracellular protons are lost in the F640L channel, as one

Figure 4. F640L Mutant TRPV1 Channels Are Toxic and Display High

Basal Activity in Mammalian Cells

(A) Representative image of HEK293 cells transfected with wild-type TRPV1 or

F640L mutant after staining with 40,6-diamidino-2-phenylindole (DAPI) to iden-

tify dead cells. Corresponding differential interference contrast (DIC) images

are shown below.

(B) Quantitation of cell death assay as performed in (A). Black and red bars

represent cell death in the absence or presence of ruthenium red (3 mM, RR),

respectively (mean ± SEM). Death among cells transfected with wild-type

TRPV1 with or without capsaicin (1 mM, cap) is shown for comparison. Back-

ground cell death was determined from cells transfected with vector alone

and subtracted from each measurement.

(C and D) Representative inside-out patch recording from HEK293 cells trans-

fected with wild-type TRPV1 or the F640L mutant. Voltage ramps under basal

conditions (blue) or in the presence of 10 mM capsaicin (green) are shown.

(Inset) For the wild-type channel, 25 consecutive ramp traces were averaged

and leak-subtracted to accurately derive the ensemble average basal current.
might expect if this mutation phenocopies the proton potentiated

state.

Additional Substitutions in the Outer Pore
Alter TRPV1 Gating
The F640 residue is located near the C-terminal end of a 15 amino

acid stretch immediately preceding the presumptive selectivity

filter, a region known in K+ channels as the pore helix (Doyle

et al., 1998). While TRP and K+ channels share limited homology,

computer algorithms (Jones, 1999) predict a high degree of hel-

icity in this region of TRPV1, suggesting that a pore helix may in-

deed be present (Figure 6A). While it is generally accepted that

the outer pore region contains structural determinants for ion per-

meation and block (Yellen, 1998), the role of pore helices in the

regulation of channel gating has been less fully explored. Our

yeast screen and functional characterization of F640L suggest

that the pore helix may be particularly critical for TRPV1 gating.

We randomized the F640 codon to fully explore the structural

requirements at this position (Figure 6B). Transformants from an

F640 minilibrary were evaluated for wild-type, gain-of-function,

or loss-of-function behavior using the yeast growth assay.

Most substitutions at this position, particularly those of a hydro-

philic nature, weakened or abolished channel activity. In con-

trast, several hydrophobic amino acids supported wild-type

functionality, except for leucine and isoleucine, which produced

constitutively active channels. Thus, our codon randomization

illustrates that most hydrophobic substitutions at F640 produce

functional channels, whereas two small hydrophobic residues

support constitutive channel activity, suggesting that F640 is

buried in a nonpolar environment.

Although we analyzed a large number of clones in our initial

yeast screen, it is possible that some function-altering substitu-

tions went undetected. We therefore screened a more restricted

yeast library in which only the TRPV1 pore helix and its immedi-

ate environment (residues 626–660) were randomly mutagenized

to uncover additional substitutions in this region that might lead

to constitutive activation (Table S1). We uncovered nine addi-

tional substitutions conferring a toxic phenotype in yeast. Of

these, two (N628D and V658A) showed a potentiation effect un-

der moderately acidic conditions, while two more (T641S and

T650S) showed high basal activity (Figures 6C and 6D). Interest-

ingly, T641S (and, to a lesser extent, T650S) mutants displayed

large constitutive channel activation with relative insensitivity to

pH 6.4. The T641S mutant also caused widespread death in

HEK293 cells (data not shown). Thus, at least two mutants recov-

ered in the outer pore region are reminiscent of the original F640L

mutation. Because substitutions in two adjacent residues (F640

and T641) produce similar functional alterations, we conclude

that the short stretch of amino acids at the interface between

the pore helix and the permeation pathway forms a particularly

crucial part of the gating apparatus.

The Functional Role of the Pore Helix Is Conserved
in Related TRP Family Members
Mammalian TRPV channels are highly divergent at the amino

acid level. Rat TRPV1, TRPV2, TRPV3, and TRPV4 exhibit only

21% identity overall, while TRPV5 and TRPV6 are even more dis-

tantly related. Interestingly, the 13 residue long stretch
Neuron 58, 362–373, May 8, 2008 ª2008 Elsevier Inc. 367
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connecting the pore helix and selectivity filter displays 69.2%

identity in TRPV1–4 (Figure 6A), suggesting that some TRP chan-

nels may share common architectural features within this region.

We therefore asked whether any pore helix mutations identified

in our TRPV1 screen would produce a gain-of-function effect in

other TRPV family members.

TRPV3 is activated by warm temperatures, with a threshold in

the 33�C–38�C range (Peier et al., 2002; Smith et al., 2002; Xu

et al., 2002). Sequence alignments reveal a threonine at position

636 in TRPV3 corresponding to T641 in TRPV1 (Figure 6A). We

asked whether TRPV3 T636S channels displayed constitutive ac-

tivity similar to TRPV1 T641S. Strikingly, transfection of TRPV3

T636S into HEK293 cells produced massive cell death that was

significantly attenuated by ruthenium red, while no toxicity was

observed from the wild-type channel (Figure 7D). In inside-out

patches excised from oocytes expressing wild-type TRPV3, we

observed small outwardly rectifying basal currents that were ro-

bustly stimulated by the broad-spectrum TRP channel agonist

2-aminoethoxydiphenyl borate (2-APB) (Chung et al., 2004a;

Hu et al., 2004) (Figure 7A). In contrast, TRPV3 T636S exhibited

large basal currents characterized by high channel noise and out-

ward rectification (Figure 7B), reminiscent of wild-type TRPV3 ac-

tivity at warm temperatures. As with the TRPV1 pore helix mutant,

TRPV3 T636S channels showed substantial basal currents at

negative holding potentials. By normalizing the basal currents to

a maximal 2-APB-evoked response (300 mM), we estimate that

T636S displays�300-fold increase in spontaneous activity com-

pared to the wild-type channel (Figure 7C). TRPV3 T636S basal

currents were suppressed by cold (10�C), and the inward current

was strongly attenuated by ruthenium red (Figures 7A and 7B and

Figure 6. Additional Substitutions in the

TRPV1 Pore Helix Affect Channel Activation

(A) Alignment of the pore helices and selectivity fil-

ters from various TRPV channels (r, rat; h, human;

c, chicken). Helicity index for rat TRPV1 (0–10,

generated using PSIPRED) is shown above align-

ment.

(B) Summary of F640 saturation screen. Trans-

formants harboring a library of TRPV1 mutants

(with a randomized F640 codon) were scored ac-

cording to growth pattern and mutant plasmids

sequenced to determine the amino acid substitu-

tion. Note that F640A and F640T were scored

as both ‘‘wild-type’’ and ‘‘weak loss of function,’’

consistent with an intermediate phenotype.

(C and D) Quantitation of normalized basal or pH-

evoked currents for mutants recovered from the

pore helix screen, analyzed by TEVC as in Figure 3.

*p % 0.01, Student’s t test.

Data represent mean ± SEM, n R 3 per construct.

Figure 5. F640L TRPV1 Mutant Channels

Show Enhanced Chemical and Thermal

Sensitivity, but Decreased Proton

Potentiation

(A) TEVC recording of TRPV1 wild-type (black) or

F640L (orange) channels reveals leftward shift in

the agonist dose-response relationship (mean ±

SEM at +80 mV, n = 4 oocytes per condition).

(B) Inside-out patch recording from HEK293 cells

transfectedwith wild-type (black) or F640L (orange)

channels stimulated with a temperature ramp from

10�C to 44�C (mean ± SEM at �60 mV, n R 4

patches per condition) reveals hypersensitivity to

heat.

(C and D) Voltage-ramp traces from whole-cell

patch-clamp recordings of HEK293 cells express-

ing wild-type or F640L mutant channels. Blue

traces indicate basal channel current at room tem-

perature in pH 7.4 bath solution, while green traces

indicate channel current after perfusion with pH 6.2

bath solution. Subsequent addition of capsazepine

(30 mM, red) efficiently inhibited F640L basal

current.

(E) Quantitation of fold potentiation (at +80 mV) at

pH 6.2 versus 7.4 for wild-type and F640L chan-

nels, as in (C) and (D) (mean ± SEM, n = 4–6 cells

per condition).
368 Neuron 58, 362–373, May 8, 2008 ª2008 Elsevier Inc.
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data not shown), a pharmacology consistent with TRPV3-evoked

currents in native or heterologous systems (Chung et al., 2004b;

Peier et al., 2002; Smith et al., 2002; Xu et al., 2002). We also in-

vestigated the effects of an F603L substitution in TRPV2, a posi-

tion corresponding to F640L in TRPV1. Unlike other TRPV chan-

nels, wild-type TRPV2 exhibits no measurable basal activity

when heterologously expressed, and we did not detect basal cur-

rents from either wild-type or F603L TRPV2 channels (data not

Figure 7. The Gating Function of the Pore Helix Is Conserved across

TRPV Channels

Voltage-ramp traces from representative inside-out macropatches excised

from oocytes expressing wild-type human TRPV3 (A) versus T636S mutant

(B). Patches were allowed to stabilize for 5 min after excision. Blue traces in-

dicate basal current at room temperature. Inset represents ensemble average

basal current for wild-type TRPV3. Red trace shows current at 10�C, illustrat-

ing block of T636S basal activity by cold temperature. Corresponding current

versus time plots are shown below each set of voltage ramps, illustrating that

wild-type and mutant channels respond similarly to 300 mM 2-APB. (C) Quan-

titation of basal current (normalized to 300 mM 2-APB response) for TRPV3

wild-type or T636S mutant channels (n R 4 patches per condition). (D)

TRPV3 T636S mutant caused massive toxicity in transfected HEK293 cells

that was blocked by ruthenium red (RR, 3 mM, red bar). Wild-type TRPV3 is

shown for comparison (mean ± SEM). (E) Representative traces from TEVC re-

cordings of oocytes expressing wild-type rat TRPV2 versus F603L mutant. Oo-

cytes were exposed to 1 or 3 mM 2-APB (green or yellow bars, respectively).

(F) Quantitation of 1 mM 2-APB evoked responses in cells expressing wild-

type TRPV2 or F603L mutant channel (normalized to the 3 mM 2-APB re-

sponse) reveals that the F603L mutant displays enhanced sensitivity to a lower

concentration of 2-APB (mean ± SEM; n = 4 cells per condition; p % 0.001,

Student’s t test).
shown). Nevertheless, we observed that the F603L mutant dis-

plays enhanced 2-APB sensitivity (Figures 7E and 7F). Taken to-

gether, our data show that mutations in pore helices shift multiple

TRPV channels into an open conformation, showing that this re-

gion plays a conserved role in the gating of different TRP family

members by diverse chemical and thermal stimuli.

DISCUSSION

Conservation of TRPV1 Functional Properties
in a Nonmammalian Genetic System
Spontaneous gain-of-function mutations have provided valuable

insights into ion channel permeation and gating (Kohda et al.,

2000; Navarro et al., 1996). While naturally occurring mutations

have been identified in mammalian TRP channels (Asakawa

et al., 2006; Kim et al., 2007; Xu et al., 2007), these sporadic ge-

netic events are too rare to support a systematic analysis of TRP

channel functionality. Here, we report a facile and unbiased for-

ward genetic screen for isolating gain-of-function mutations in

a mammalian TRP channel based on a simple yeast growth phe-

notype. This high-throughput methodology enabled us to survey

the TRPV1 coding region for substitutions that cause constitutive

activation. Such an approach has been applied to microbial cat-

ion channels (Loukin et al., 1997; Ou et al., 1998) and vertebrate

inward rectifier K+ channels (Sadja et al., 2001; Yi et al., 2001),

and we now extend this strategy to include nonselective mam-

malian cation channels. Previous studies have exploited poly-

morphisms between TRP channel homologs or orthologs to

delineate molecular determinants underlying ligand activation

(Chuang et al., 2004; Jordt and Julius, 2002; Ryu et al., 2007),

but this methodology is limited for numerous reasons. TRP chan-

nel subtypes generally exhibit low sequence homology, and thus

channel chimeras are often nonfunctional. In addition, such an

approach cannot pinpoint residues that are conserved across

channels. Indeed, many mutations uncovered by our screen

are highly conserved in TRPV1 orthologs or other TRPV family

members, attesting to the increased power of this approach

for detecting core structural elements. A select percentage

(0.10%) of mutant channels emerged from the cell death assay,

of which�40% showed bona fide functional perturbations when

examined in vertebrate expression systems, attesting to both the

stringency and efficiency of the screen. Perhaps most impor-

tantly, this screen revealed a number of interesting channel mu-

tants that have not been described in previous structure-function

studies.

Remarkably, rat TRPV1 expressed in yeast recapitulates func-

tional properties observed in neurons or other mammalian cell

types, including sensitivity to noxious heat and capsaicin. This

suggests that both chemical and thermal sensitivity are intrinsic

channel properties, not requiring membrane or cytoplasmic fac-

tors specific to metazoans. Moreover, yeast are hyperpolarized

compared to metazoan cells, with membrane potentials esti-

mated at �100 to �250 mV (Serrano and Rodriguez-Navarro,

2001). The observation that TRPV1 can be robustly activated in

yeast therefore favors a modest role for membrane voltage as

a regulator of channel gating (Latorre et al., 2007; Matta and

Ahern, 2007).
Neuron 58, 362–373, May 8, 2008 ª2008 Elsevier Inc. 369
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The Pore Helix as a Transducer of TRPV1 Gating
A hallmark of many TRP channels is their ability to integrate mul-

tiple physiological inputs (Clapham, 2003; Dhaka et al., 2006;

Julius, 2005). This is exemplified by TRPV1, whose role as a poly-

modal detector of chemical and physical stimuli underlies its ca-

pacity to regulate sensory neuron excitability under normal and

pathophysiological conditions (Tominaga et al., 1998). Different

TRPV1 stimuli (e.g., capsaicin, heat, acidic pH) produce syner-

gistic effects on channel activation, while antagonists (e.g., cap-

sazepine, cold, alkaline pH) diminish responses to multiple acti-

vating stimuli, providing evidence for crosstalk and convergence

in channel gating mechanisms (Tominaga et al., 1998). This is

consistent with our observation that the F640L mutant shows

a shallowing of dose-response profiles to capsaicin and temper-

ature, accompanied by a leftward shift in activation thresholds.

This decreased cooperativity and increased sensitivity suggest

that the pore helix region undergoes a structural transition com-

mon to all activating modalities, for which the energetic barrier is

lowered by mutations such as F640L.

In the case of extracellular protons, it is possible to separate

their ability to potentiate other stimuli under moderately acidic

(pH 6.4) conditions versus their ability to activate TRPV1 de

novo at room temperature (pH < 6.0). Mutations at two extracel-

lular glutamate residues, E600 or E648, selectively alter the mod-

ulatory versus activating effects of protons, respectively (Jordt

et al., 2000). In this regard, it is interesting that F640L displays

agonist hypersensitivity and loss of proton-mediated potentia-

tion but shows normal de novo gating by protons, similar to

positively charged substitutions at E600 (Jordt et al., 2000).

Thus, perturbations in the pore helix are sufficient to favor an

open conformation, perhaps mimicking and occluding the mod-

ulatory effect mediated by interaction of protons with extracellu-

lar sites such as E600.

While our data establish a role for the pore helix in proton-medi-

ated potentiation, recent work suggests that this domain may also

be involved in de novo proton gating. Mutation of residue T633 in

TRPV1, also located within the pore helix, abolishes proton-

evoked activation, although protons can still potentiate currents

evoked by capsaicin (Ryu et al., 2007). Thus, other pore helix

substitutions show a distinct but related phenotype to that ob-

served in our study, namely, alteration of de novo proton-evoked

activation rather than proton-mediated potentiation. These stud-

ies support the general conclusion that conformational changes

in the pore helix are critical for both the activating and modulatory

effects of protons on TRPV1 and underscore the idea that, while

proton-mediated potentiation and de novo activation are deter-

mined by distinct sets of residues, their effects on channel gating

both involve the pore helix as a key regulatory domain.

Based on secondary structure predictions and their relation-

ship to known K+ channel structures, E600 and E648 are pre-

dicted to lie near the extracellular face of the outer pore, close

to the top of the pore helix (Figure 8), and it is conceivable that

protonation of these residues could induce conformational rear-

rangements propagating through the pore helix that ultimately

lead to channel opening. Perhaps the C terminus of the pore helix

forms a movable barrier to ion flux, either by protruding directly

into the permeation pathway or by constricting the selectivity

filter into a nonconductive conformation similar to that observed
370 Neuron 58, 362–373, May 8, 2008 ª2008 Elsevier Inc.
in one crystal structure of the prokaryotic K+ channel KcsA (Zhou

et al., 2001). Alternatively, residues within the pore helix might not

form a physical occlusion per se, but rather stabilize an open con-

formation of the channel, comparable to a model proposed for the

gating of inward rectifier K+ channels (Alagem et al., 2003).

The Pore Helix as a Conserved Element in TRP
Channel Gating
Our present analysis of the pore helix suggests that its role in gat-

ing is conserved in at least a subset of TRP channels. We found

that mutationof porehelix residues leads toconstitutiveactivation

of TRPV3, as well as potentiation of TRPV2. Therefore, our study

suggests that the pore helix plays a general role in TRP channel

gating that has not been previously appreciated. TRPV1 may rep-

resent a case in which a universal gating element has been

usurped to serve as an allosteric regulatory site for protons, allow-

ing for alteration of TRPV1 sensitivity in the setting of inflammation

and tissue acidosis. Thus far, relatively few structural elements

have been shown to play conserved functional roles in TRP chan-

nels, and it may be worthwhile to investigate pore helices as

gating elements in other mammalian TRP family members.

While numerous studies have localized the molecular determi-

nants of ion permeation and block to the outer pore region of

TRP (Voets et al., 2002, 2004) and other cation channels (Ahern

et al., 2006; Chatelain et al., 2005; Doyle et al., 1998), the role of

the pore helix in TRP channel gating and agonist sensitivity is un-

expected. Indeed, structural analyses suggest that voltage acti-

vation of K+ channels involves alteration of interactions between

the S4-S5 linker and the cytoplasmic end of S6, relieving strain

on the helical bundle crossing that forms the intracellular gate

(Long et al., 2005a, 2005b; Tombola et al., 2006). In this model,

the outer pore region is an ion conduit that remains relatively sta-

tionary during the overall gating transition. On the other hand, the

Figure 8. A Structural Model for the Pore Region of TRP Channels

A model of the S5-pore-S6 region of TRPV1 as inspired by the Kv1.2 structure

(PDB: 2R9R), prepared with PyMOL software (Delano, 2002). The pore helix is

shown in orange. Relative location of the F640 residue is shown in green, and

E600 and E648 residues previously implicated in proton modulation are shown

in red.
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outer pore is known to play a critical role in the context of C-type

inactivation, the process by which repetitive voltage stimulation

desensitizes voltage-gated K+ channels via a mechanism involv-

ing collapse of the selectivity filter. Mutations in the outer pore

region, including the pore helix, can dramatically influence the

extent of K+ channel C-type inactivation, suggesting that these

regions play an important role in modulating the biophysical

properties of open K+ channels (Cordero-Morales et al., 2006;

Hoshi et al., 1991; Liu et al., 1996; Lopez-Barneo et al., 1993).

Thus, the outer pore can influence the level of K+ channel activity

under certain conditions.

Aside from K+ channels, additional studies have suggested

a role for the pore helix in gating of other 6TM channels. Cysteine

accessibility experiments in CNG channels (Liu and Siegelbaum,

2000), as well as in TRPV5 and TRPV6 (Voets et al., 2004; Yeh

et al., 2005), show that residues in the pore helix are differentially

reactive to modifying agents in the closed and open states, illus-

trating that in these cases (and unlike K+ channels), the pore helix

may rotate during gating. Together with our findings, these

observations indicate that, despite topological resemblance to

voltage-gated K+ channels, gating of other members of the

6TM superfamily may involve a conformational change in the

outer pore region. This is not to say that the structural determi-

nants of activation identified in voltage-gated channels are irrel-

evant to TRP channels. Indeed, recent work has identified spon-

taneous dominant mutations in TRPV3 linked to hair loss and

atopic dermatitis that dramatically enhance basal activity when

engineered into the cloned channel (Asakawa et al., 2006; Xiao

et al., 2007). Interestingly, both mutations map to a single residue

in the putative S4-S5 region of TRPV3, suggesting that confor-

mational changes in this linker might also play a role as molecular

determinants of channel activation, perhaps via interaction with

a cytoplasmic activation gate at the intracellular segment of

S6. These and other studies highlight the idea that TRP channel

gating likely involves multiple regions, including the pore helix

and the S4-S5 linker. Future work will address the physical and

functional interplay between these regions in shaping the phys-

iological properties of TRP channels.

EXPERIMENTAL PROCEDURES

Molecular Biology

Rat TRPV1 was cloned into p425GPD. For mutagenic library construction,

TRPV1 was amplified using Taq polymerase (New England Biolabs) under

standard conditions for 25 cycles, and the mutagenized N- or C-terminal cas-

settes were separately reintroduced back into the wild-type construct to gen-

erate two distinct libraries with the desired mutagenesis frequency. For the

pore helix library, mutagenesis rate was boosted by supplementing the PCR

with MgCl2 and MnCl2 (final concentrations of 7 and 0.5 mM, respectively), in-

creasing cycle number to 40, and decreasing the concentration of dATP and

dGTP relative to dCTP and dTTP. Site-directed mutagenesis was performed

by overlap extension PCR or QuikChange (Stratagene) or by yeast in vivo

recombination. Mutant channels were cloned into the mammalian/oocyte

expression vector pMO (gift of Lily Jan) for functional analysis. All constructs

were verified by DNA sequencing.

Yeast Transformation and Replica Plating

Strain BY4741 (Mata his3D1 leu2D0 met15D0 ura3D0) was transformed with

lithium acetate/polyethylene glycol and selected on medium lacking leucine.

Media was supplemented with 20 mM MES and buffered to pH 6.2, under
which conditions little or no inward current is observed in mammalian cells ex-

pressing TRPV1 (Figure 5C). Capsaicin (Tocris) and/or ruthenium red (Sigma)

were added to molten agar prior to pouring. After 2 days growth on selective

medium with 3 mM ruthenium red (mother plate), transformants were replica

plated onto two plates, one lacking and another containing 10 mM ruthenium

red (daughter plates), the latter designed to eliminate false positives arising

from inefficient colony transfer from the mother plate. After two more days,

the daughter plates were aligned to identify clones exhibiting basal toxicity.

Clones from this first round of screening were retested by serial dilution.

Plasmids were subsequently rescued and retransformed into fresh BY4741

to confirm the phenotype.

Cobalt Uptake Assay

Yeast cultures were grown to mid-log phase in selective medium and washed

once in cobalt uptake assay buffer (in mM: 58 NaCl, 5 KCl, 2 MgCl2-6H20, 0.75

CaCl2, 12 glucose, 137 sucrose, 10 HEPES, pH 7.4). Pellets were resuspended

in assay buffer with 5 mM CoCl2 plus varying concentrations of capsaicin and

incubated for 5 min at 30�C. For temperature experiments, cells were sub-

jected to varying temperatures for 5 min using a gradient PCR thermocycler

(MJ Research). Cells were washed twice in assay buffer and stained with

1% (NH4)2S.

Mammalian Cell Culture and Electrophysiology

HEK293T cells were cultured and transfected as previously described (Chuang

et al., 2004.) For some experiments, we generated stable tetracycline-induc-

ible Flp-in T-rex HEK293 cell lines (Invitrogen) expressing wild-type TRPV1

or the F640L mutant. For whole-cell or excised patch recordings, bath solution

contained (in mM) 140 NaCl, 10 HEPES, 1 MgCl2-6H2O, 1 EGTA, pH 7.4.

Pipette solution was identical, except that CsCl was substituted for NaCl.

For proton experiments, we substituted MES for HEPES in the bath and ad-

justed pH accordingly. For single-channel analysis, pipette solution contained

1 mM capsaicin. Relative permeabilities were estimated from reversal potential

shifts between solutions containing (in mM) 10 HEPES, 10 glucose, and either

140 NaCl, 140 KCl, or 125 NMDG-Cl + 10 CaCl2. Liquid junction potentials did

not exceed 3 mV. Pipettes were fabricated from borosilicate glass (WPI) with

resistances after fire-polishing of 1–2 MU for whole-cell experiments, 0.8–

1.2 MU for inside-out macropatch experiments, and 6–10 MU for cell-attached

single-channel experiments. Currents were recorded with an Axopatch 200B

amplifier (Molecular Devices) using a 180 ms voltage ramp from �120 mV to

+80 mV delivered once per second. Currents were recorded at 5 kHz, filtered

at 2 kHz, and analyzed with pClamp 10 (Molecular Devices). Temperature

ramps were generated with a custom-made Peltier device (Reid-Dan Electron-

ics). Capsaicin, capsazepine, and 2-APB were dissolved in DMSO, and ruthe-

nium red was dissolved in water. Drugs were diluted into recording solution

immediately prior to experiments.

Xenopus Oocyte Culture and Electrophysiology

Surgically extracted oocytes from Xenopus laevis (Nasco) were cultured and

analyzed 2–14 days postinjection by TEVC as previously described (Chuang

et al., 2004). For proton experiments, MES was substituted for HEPES and

pH adjusted accordingly. For patch-clamp analysis, both the bath and pipette

solutions contained (in mM) 140 CsCl, 10 HEPES, 1 MgCl2-6H20, 1 EGTA,

pH 7.4. Macropatches were excised from devitellinized oocytes using pipettes

with resistances of 0.3–0.8 MU, and currents were analyzed as described for

mammalian cell patch clamp.

Mammalian Cell Death Assays

After 16 hr, transfected HEK293 cells were stained with DAPI (500 ng/ml) to

identify dead cell nuclei. DAPI-positive cells were averaged from four different

fields per transfection. Each field contained approximately the same total

number of cells.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/3/362/DC1/.
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