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SUMMARY

Half of hereditary nonpolyposis colon cancer
kindreds harbor mutations that inactivate
MutLa (MLH1�PMS2 heterodimer). MutLa is
required for mismatch repair, but its function
in this process is unclear. We show that human
MutLa is a latent endonuclease that is activated
in a mismatch-, MutSa-, RFC-, PCNA-, and
ATP-dependent manner. Incision of a nicked
mismatch-containing DNA heteroduplex by
this four-protein system is strongly biased to
the nicked strand. A mismatch-containing
DNA segment spanned by two strand breaks
is removed by the 50-to-30 activity of MutSa-
activated exonuclease I. The probable endonu-
clease active site has been localized to a PMS2
DQHA(X)2E(X)4E motif. This motif is conserved
in eukaryotic PMS2 homologs and in MutL
proteins from a number of bacterial species
but is lacking in MutL proteins from bacteria
that rely on d(GATC) methylation for strand
discrimination in mismatch repair. Therefore,
the mode of excision initiation may differ in these
organisms.

INTRODUCTION

Inactivation of the human mismatch repair system in-

creases the mutation rate several hundred-fold and is

the primary cause of hereditary nonpolyposis colon can-

cer (HNPCC). Genetic stabilization afforded by this system

has been attributed to its function in the correction of DNA

biosynthetic errors, its role in ensuring the fidelity of ge-

netic recombination, and its participation in the check-

point and apoptotic responses to several classes of

DNA damage (reviewed in Surtees et al., 2004; Stojic

et al., 2004; Kunkel and Erie, 2005; Iyer et al., 2006). The

reaction responsible for correction of replication errors is

the best understood in molecular terms.

The mechanism of mismatch repair has been most

extensively studied in E. coli, and the E. coli reaction
has been reconstituted in a purified system (Kunkel

and Erie, 2005; Iyer et al., 2006). Repair is directed to

the daughter strand at the replication fork by virtue of

the transient absence of d(GATC) methylation in newly

synthesized DNA. Repair is initiated by binding of

MutS to a mismatch, and MutL is recruited to the het-

eroduplex DNA in a MutS- and ATP-dependent manner.

Assembly of the MutL�MutS�heteroduplex ternary com-

plex is sufficient to activate the d(GATC) endonuclease

activity of MutH, which incises the unmethylated strand.

The ensuing strand break is the actual signal that directs

repair to the new DNA strand and serves as an entry

point for the excision system, comprised of DNA heli-

case II and an appropriate single-strand exonuclease.

A 30-to-50 exonuclease is required when the MutH nick

is introduced 30 to the mismatch, while a 50-to-30 hydro-

lytic activity is necessary when the MutH strand break is

50 to the mispair. DNA polymerase III holoenzyme repairs

the ensuing gap, and ligase restores covalent integrity to

the helix.

Mammalian cell extracts support a similar reaction in

which repair is directed by a strand discontinuity (a nick

or gap) that may also reside either 30 or 50 to the mismatch

(Kunkel and Erie, 2005; Iyer et al., 2006). The key proteins

for initiation of eukaryotic mismatch repair are homologs

of bacterial MutS and MutL. Eukaryotes harbor two mis-

match recognition activities, MutSa (MSH2�MSH6 heter-

odimer) and MutSb (MSH2�MSH3 heterodimer), although

MutSa is probably responsible for most mismatch repair

events in mammalian cells. Eukaryotic MutL homologs

also function as heterodimers, with MLH1 serving as

a common subunit. The best characterized of these has

been MutLa, isolated from both human (MLH1�PMS2 het-

erodimer) and yeast (MLH1�PMS1 complex) (Prolla et al.,

1994; Li and Modrich, 1995; Habraken et al., 1998;

Bowers et al., 2001; Raschle et al., 2002; Tomer et al.,

2002).

Study of the mammalian extract reaction has implicated

six activities in addition to MutSa, MutSb, and MutLa in

nick-directed mismatch repair: the PCNA replication

clamp, the RFC clamp loader, the single-strand DNA

binding protein RPA, exonuclease I (ExoI), DNA polymer-

ase d, and the DNA binding protein HMGB1 (Kunkel and

Erie, 2005; Iyer et al., 2006). Surprisingly, ExoI, which
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hydrolyzes duplex DNA with 50-to-30 polarity in the ab-

sence of other proteins, is required for both 50- and 30-

directed repair of G-T or G-G mismatches in extracts of

human and mouse cells (Genschel et al., 2002; Wei et al.,

2003). However, extracts of an ExoI�/�mouse cell line re-

tain significant activity on single-nucleotide and dinucleo-

tide insertion/deletion heteroduplexes, and HPRT muta-

bility of such cells is elevated 30-fold, substantially less

than the 150-fold increase conferred by MSH2 deficiency

(Wei et al., 2003). Although the spectrum of HPRT muta-

tions was not established in the Wei et al. study, these

findings indicate that ExoI plays a major role in the

MutSa-dependent repair of base-base mispairs, but also

that alternate excision activities may function in inser-

tion/deletion mismatch correction.

These observations have led to several purified systems

that support nick-directed mismatch-provoked excision

and repair. The simplest of these consists of MutSa,

MutLa, ExoI, and RPA (±HMGB1) (Genschel and Modrich,

2003; Zhang et al., 2005). Hydrolysis in this system is mis-

match provoked but always proceeds 50 to 30 from the nick

that directs excision. Although MutLa is not required in this

system, it does enhance the mismatch dependence of the

reaction by suppressing ExoI hydrolysis of mismatch-free

DNA (Genschel and Modrich, 2003).

Supplementation of MutSa, MutLa, ExoI, and RPA with

PCNA and RFC yields a system that supports bidirectional

excision, i.e., excision directed by a nick located either 30

or 50 to the mismatch (Dzantiev et al., 2004). In contrast to

the simpler 50-to-30 reaction, 30-directed excision is abso-

lutely dependent on MutLa, RFC, and PCNA. RFC appar-

ently plays two roles in the activation of 30-directed exci-

sion. It functions as a PCNA loader, with the loaded

form of PCNA necessary to activate 30-directed excision,

but it also acts directly to suppress ExoI-mediated 50-to-30

hydrolysis from a nick or gap located 30 to the mismatch

(Dzantiev et al., 2004; N.C. and P.M., unpublished data).

Since the activities other than ExoI used in this study

were free of exonuclease activity and because an ExoI

active-site mutant did not support 30-directed excision,

hydrolysis in this system was attributed to ExoI (Dzantiev

et al., 2004). Addition of DNA polymerase d to these six

components yields a system that supports mismatch

repair in a reaction that can be directed by a strand

break located 30 or 50 to the mismatch (Constantin et al.,

2005). As observed for 50-directed excision, 50-directed

repair in this system is MutLa independent but requires

RFC and PCNA for the repair synthesis step of the

reaction.

The work described here clarifies the functions of MutLa

and ExoI in human mismatch repair. We show that MutLa

harbors a latent endonuclease that is activated in a

mismatch-, MutSa-, RFC-, PCNA-, and ATP-dependent

manner. Incision of a nicked heteroduplex by this four-

protein system is strongly biased to the nicked strand. A

mismatch-containing segment spanned by two strand

breaks is then excised by the 50-to-30 action of MutSa-

activated ExoI.
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RESULTS

MutSa-, MutLa- RFC-, and PCNA-Dependent

Endonucleolytic Cleavage of the Discontinuous

Strand of a Nicked Heteroduplex

Biochemical analysis of human mismatch repair has relied

on the use of circular substrates containing a mismatch

and a strand discontinuity (a nick or a gap) that directs

the reaction. Because mismatch-provoked excision in nu-

clear extracts is restricted to the shorter path linking the

two DNA sites (Fang and Modrich, 1993), circular DNAs

of this form are referred to as 30 or 50 heteroduplexes de-

pending on whether the strand discontinuity resides 30 or

50 to the mispair, respectively, as viewed along the shorter

path (see Figure 1 and Figure 2).

We have previously shown that a system comprised of

MutSa, MutLa, RFC, PCNA, ExoI, and RPA supports

30-nick-directed mismatch-provoked excision (Dzantiev

et al., 2004). Subsequent experiments suggested that

this reaction might involve MutSa-, MutLa-, RFC-, and

PCNA-dependent endonucleolytic attack on the incised

heteroduplex strand (data not shown). This was confirmed

by Southern analysis after restriction endonuclease cleav-

age and resolution of DNA products on denaturing gels.

The production of new DNA termini on a 30 heteroduplex,

as visualized by this method, is illustrated in Figure 1. Use

of a radiolabeled probe complementary to the 30 terminus

of the nicked strand demonstrated the production of

new DNA termini 50 to the site of probe hybridization

(Figure 1A). A mismatch, MutSa, MutLa, RFC, PCNA,

and ATP were required for this effect, but RPA was not

(lanes 1–7; see also Table S1 in the Supplemental Data

available with this article online). Fifty percent of the prod-

ucts shown in Figure 1A range in size from 0.10 to 0.56 kb,

although new termini as far as 3 kb from the original strand

break were detectable (lanes 2 and 7). Because the nick-

mismatch separation distance in this 30 heteroduplex is

141 bp, these results imply that incision of this DNA oc-

curred preferentially on the 50 side of the mispair, although

some incision 30 to the mismatch also occurred. By con-

trast, the yield of these products was greatly reduced if

ExoI was included in the reaction, as was the signal cor-

responding to the original heteroduplex 30 terminus

(Figure 1A, compare lane 8 with lanes 2 and 7).

The nature of endonucleolytic incision by this system

was also addressed using probes that hybridize to the

nicked heteroduplex strand on either side of the ClaI site

(Figures 1B and 1C). The experiment shown in Figure 1B

probes the other end of the DNA fragment analyzed in

Figure 1A, i.e., for the production of new 30 termini within

this DNA segment. Incision products obtained in the pres-

ence of MutSa, MutLa, RFC, and PCNA (±RPA) and visu-

alized with this probe were consistent with those observed

in Figure 1A. As noted above, the occurrence of new 50 ter-

mini within the region bracketed by the 30 heteroduplex

strand break and the ClaI site was abolished when ExoI

was included in the reaction (Figure 1A, lane 8). However,

generation of new 30 termini within this region was



Figure 1. Incision of the Nicked Strand of a 30 Heteroduplex by MutSa, MutLa, PCNA, and RFC

Reactions (see Experimental Procedures) contained nicked 30 G-T heteroduplex or 30 A�T homoduplex DNA and proteins as indicated.

DNA products were cleaved with ClaI, resolved by electrophoresis through alkaline agarose gels, and transferred to nylon membranes (see Exper-

imental Procedures), which were probed with 32P-labeled oligonucleotides corresponding to f1MR59 (Dzantiev et al., 2004) viral strand coordinates

5491–5514 (A), viral strand coordinates 2505–2526 (B), viral strand coordinates 2531–2552 (C), or complementary strand coordinates 2505–2526 (D).

When applicable, the location of the mismatch within the probed DNA fragment is indicated. The mobility of the full-length probed DNA segment is

indicated by an asterisk; as described in the text, smaller DNA species are produced by endonuclease action.
demonstrable under these conditions (Figure 1B, lane 8).

Because the MutSa, MutLa, RFC, PCNA, and RPA prepa-

rations used in these experiments were free of detectable

exonuclease activity (Dzantiev et al., 2004; Table S1), the

simplest explanation for these results is that 50 termini pro-

duced by the endonucleolytic action of the MutSa, MutLa,

RFC, PCNA system serve as entry sites for 50-to-30 hydro-

lysis by MutSa-activated ExoI (Genschel and Modrich,

2003; Dzantiev et al., 2004), which excises the DNA seg-

ment between this site and the original heteroduplex

strand break, thus eliminating the hybridization target of

the oligonucleotide probe.

Incubation of the 30 heteroduplex with MutSa, MutLa,

RFC, and PCNA (±RPA) also produced new termini on

the 50 side of the heteroduplex strand break (Figure 1C).

However this effect was attenuated by ExoI, which led to

the preferential elimination of those termini most distant

from the mismatch (compare lane 8 with 2 and 7). A similar
ExoI effect is evident in Figure 1B (lane 8 versus 2 and 7),

and the products observed in the presence of ExoI in

these two instances are similar to those observed previ-

ously in the defined 30 excision system (Dzantiev et al.,

2004). We think it unlikely that this preferential loss of distal

termini is due to ExoI hydrolysis of hybridization target

sequences in these cases. Rather, we attribute this effect

to hydrolytic removal of the mismatch, which leads to cis

inactivation of the endonucleolytic system. When inactiva-

tion in this manner does not occur, MutSa-, MutLa-, RFC-,

and PCNA-dependent endonucleolytic incision is an

ongoing process, and endonucleolytic events can occur

several thousand bp from the mismatch. Additional evi-

dence for this view is presented below.

Endonucleolytic attack on the nicked 30 heteroduplex

DNA by this system was strongly biased to the nicked

strand; incision of the continuous strand was limited to

about 10% of that occurring on the nicked strand
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Figure 2. MutSa, MutLa, PCNA, and RFC Incise the Nicked Strand of 50 Heteroduplex DNA

Reactions and analysis were as in Figure 1, except that substrates were nicked 50 G-T heteroduplex or 50 G�C homoduplex. DNA products were

cleaved with ClaI, resolved by alkaline electrophoresis, and transferred to nylon membranes, which were probed with 32P-labeled oligonucleotides

corresponding to f1MR1 (Su et al., 1988) viral strand coordinates 5732–5755 (A), viral strand coordinates 2531–2552 (B), viral strand coordinates

2505–2526 (C), or complementary strand coordinates 2531–2552 (D).
(Figure 1D; Table S1; see also below). Furthermore, cova-

lently closed circular heteroduplex and homoduplex DNAs

were resistant to incision by this system (Figure S1).

The nicked strand of a 50 G-T heteroduplex (nick and

mismatch separated by 128 bp) was also subjected to in-

cision in the presence of MutSa, MutLa, RFC, and PCNA

(Figure 2). As observed with 30 substrates, incision was

mismatch dependent and occurred in the absence of

RPA (Figures 2A–2C), and the continuous heteroduplex

strand was resistant (incision was about 6% of that occur-

ring on the nicked strand; compare Figure 2D with Figures

2A–2C; Table S1). Furthermore, supplementation of these

proteins with ExoI abolished endonucleolytic product sig-

nals when the oligonucleotide used for end labeling was

complementary to 50 terminus at the nick that directs the

reaction (Figure 2A, compare lane 8 with lanes 2 and 7).

Presence of the exonuclease also attenuated incision

events occurring in the vicinity of the ClaI site distal from

the mismatch (Figures 2B and 2C, compare lane 8 with

lanes 2 and 7). Table S1 quantifies the results of the

incision reactions presented in Figure 1 and Figure 2.
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As can be seen, 50 and 30 heteroduplexes are incised with

similar efficiency and in a manner that is highly dependent

on a mismatch, MutSa, MutLa, RFC, PCNA, and ATP.

50-to-30 ExoI Hydrolysis Removes a DNA Segment

Spanning the Mismatch in a 30 Heteroduplex

We have previously shown that MutSa, MutLa, ExoI, RFC,

PCNA, and RPA are sufficient to support ATP-dependent

excision directed by a strand break located 30 to a mis-

match. The experiments described above suggested

that the endonucleolytic products produced in the pres-

ence of MutSa, MutLa, RFC, and PCNA are intermediates

in this process. Indeed, the MutSa and MutLa depen-

dence of the endonucleolytic reaction is similar to that of

reconstituted 30-directed excision (Figure S2), and homo-

geneous yeast RFC effectively substituted for human RFC

in this system (Table S1), as it does in 30-directed excision

(Dzantiev et al., 2004). Additional evidence for endonu-

cleolytic involvement in 30-directed excision was provided

by the experiment shown in Figure 3A, which used an

oligonucleotide probe complementary to that portion of



Figure 3. The Intermediate Produced by Incision of a 30 Heteroduplex Is Degraded by ExoI and Occurs in Nuclear Extracts

(A) Nicked 30 G-T heteroduplex was incubated with MutSa, MutLa, RFC, and PCNA in the absence or presence of 2.1 nM ExoI as described in Ex-

perimental Procedures, except that reaction time was varied as shown. Products were cleaved with ClaI, resolved by alkaline agarose gel electro-

phoresis, transferred to nylon membranes as in Figure 1, and probed with a 32P-labeled oligonucleotide corresponding to f1MR59 viral strand co-

ordinates 5629–5652.

(B) Dependence of the kinetics and locations of 50 termini production as a function of ExoI concentration was determined as described in (A), except

that reactions were sampled as a function of time and ExoI was present as indicated. Products were probed with a 32P-labeled oligonucleotide cor-

responding to f1MR59 viral strand coordinates 2505–2526.

(C) Reactions containing nicked 30 G-T heteroduplex or A�T homoduplex DNA and proteins as shown were performed as described in Experimental

Procedures, except that incubations were carried in two stages. Stage I reactions were performed in the absence or presence of MutSa, MutLa, RFC,

PCNA, and RPA as indicated. After deproteinization with Proteinase K and phenol/chloroform extraction, recovered DNA was employed as substrate

in a stage II incubation in the presence of the indicated proteins. Mismatch-provoked excision was scored by cleavage with NheI and ClaI followed by

electrophoresis on native agarose gels (Genschel et al., 2002). As illustrated in the diagram on the left, excision renders the DNA resistant to NheI

cleavage, the recognition site for which is located 5 bp from the mismatch.

(D) Reactions (see Experimental Procedures) contained gapped 30 A-C heteroduplex or A�T homoduplex, nuclear extract (NE), and/or proteins as

indicated. The distance between the 150 nucleotide gap and the mismatch was 51 nucleotides as viewed along the shorter path in the circular sub-

strate. DNA products were cleaved with AlwNI, resolved on an alkaline agarose gel, and transferred to nylon membranes (Figure 1), which were

probed with 32P-labeled oligonucleotides corresponding to M13B276 viral strand coordinates 6541–6564. Location of the full-length probed segment

is indicated.
the nicked heteroduplex strand spanning the mismatch.

As can be seen, endonucleolytic products containing the

mismatched base appeared and disappeared when ExoI

was included in the reaction, as expected for a reaction in-

termediate (compare lanes 2–5 with lanes 7–10). Results

of this kinetic analysis were also consistent with the above

suggestion that hydrolytic removal of the mismatch inac-

tivates the endonuclease system in cis to prevent incision

events from occurring at sites distal from the mispair.
As can be seen in Figure 3B, incision in the vicinity of the

ClaI site was also suppressed when the endonucleolytic

system was supplemented with ExoI.

Whereas MutSa, ExoI, and RPA are sufficient for exci-

sion of a mismatch when the nick that directs hydrolysis

is located 50 to the mispair (Genschel and Modrich,

2003; Zhang et al., 2005), mismatch excision directed by

a 30 strand break additionally requires MutLa, RFC, and

PCNA (Dzantiev et al., 2004). Figure 3C demonstrates
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that the activity requirements for 30-directed excision can

be resolved in a two-stage reaction. Mismatch removal

from the 30 heteroduplex occurred in a stage 2 incubation

lacking MutLa and PCNA provided that the heteroduplex

was previously incubated with MutSa, MutLa, RFC,

PCNA, and RPA, components sufficient for endonucleo-

lytic incision of the DNA (lanes 1–5). Because MutSa,

RPA, and a mismatch are sufficient to activate 50-to-30

hydrolysis by ExoI (Genschel and Modrich, 2003), we attri-

bute 30-directed excision in this system to the 50-to-30

hydrolytic function of ExoI initiating at a strand break intro-

duced on the 50 side of the mispair by the action of MutSa,

MutLa, RFC, and PCNA.

Mismatch-dependent production of endonucleolytic

intermediates can also be detected in nuclear extracts of

human cells. In order to reduce heteroduplex ligation in ex-

tracts, these experiments employed a circular A-C hetero-

duplex (or A�T homoduplex) containing a 150 nucleotide

gap located 51 bp 30 to the mismatch (Figure 3D). The gap-

ped heteroduplex supported mismatch-dependent endo-

nuclease in the presence of MutSa, MutLa, RFC, and

PCNA (Figure 3D, compare lanes 2 and 9). DNA fragments

spanning the mismatch were also produced in HeLa

nuclear extracts, and production of this species was also

mismatch dependent (lanes 7 and 14). By contrast, frag-

ments spanning the mispair were not produced in extracts

derived from MLH1�/� H6 tumor cells, although supple-

mentation of H6 extract with near homogeneous MutLa

led to production of this species in a manner similar to

that observed in HeLa extracts (lanes 5–7). As in the puri-

fied system, DNA fragments produced in nuclear extracts

were derived from the discontinuous heteroduplex strand

(Figure S3A). However, heteroduplex incision in nuclear

extracts was more restricted to the vicinity of the mismatch

than endonucleolytic events occurring in the purified sys-

tem were (Figure S3B, lane 2 versus lanes 6 and 7). A sim-

ilar effect has been noted previously with respect to termini

produced in the MutSa-, MutLa-, ExoI-, RFC-, PCNA-, and

RPA-dependent 30-directed excision system (Dzantiev

et al., 2004). These purified systems thus lack one or

more activities that function to restrict action of the endo-

nuclease component to the vicinity of the mispair.

MutLa Is a Latent Endonuclease that Is Activated

by RFC, PCNA, and MutSa

Two completely independent sets of near homogeneous

proteins were used in this work, and individual prepara-

tions were free of detectable nonspecific endonuclease

activity in presence of ATP and Mg2+ at the salt concentra-

tion used for mismatch repair assay (125 mM KCl)

(Figure 1, Figure 2, and Figure S2). However, MutSa,

MutLa, RFC, or PCNA must harbor the active site of the

endonuclease observed in this system. Studies in our

and other laboratories have failed to reveal such an activity

associated with PCNA or RFC, and we have been unable

to detect endonuclease activity in MutSa preparations.

However, we have found that MutLa preparations display

endonuclease activity under certain conditions. A weak
302 Cell 126, 297–308, July 28, 2006 ª2006 Elsevier Inc.
endonuclease activity that incises closed circular super-

coiled homoduplex DNA was detectable at low KCl con-

centration (23 mM) in the presence of 1 mM Mn2+ but

was not detectable in the presence of Mg2+ (Figures 4A

and 4B). The Mn2+-dependent activity was stimulated by

0.5 mM ATP (Figure 4A, compare lanes 2 and 3), consis-

tent with the known involvement of MutLa ATP hydrolytic

centers in mismatch repair (Tomer et al., 2002; Raschle

et al., 2002), and was further activated by RFC and

PCNA, an effect dependent on the presence of both pro-

teins (Figure 4C). Mn2+-dependent incision of supercoiled

circular DNA was independent of the presence of a mis-

match within the molecule (compare Figures 4C and 4D).

While this putative MutLa endonuclease displays a RFC

and PCNA dependence similar to that of the mismatch-

provoked reaction described above, it is nevertheless

a weak activity. For this reason, association of this activity

with MutLa was evaluated by cofractionation. Homoge-

neous recombinant MutLa was subjected to an additional

chromatography step on phosphocellulose, which was

not used during isolation of the protein. Endonuclease ac-

tivity determined in the presence of ATP�Mn2+ coeluted

from the resin with the MLH1�PMS2 heterodimer

(Figure S4A), and similar results were obtained upon gel

filtration through Superdex 200 (Figure S4B). Figure S4C

illustrates the seventh column step during isolation of

MutLa from HeLa nuclear extracts. As can be seen,

ATP�Mn2+-dependent endonuclease activity, which is

activated in the presence of MutSa, RFC, and PCNA, co-

chromatographs on MonoS with HeLa MutLa, which was

scored by Western blot for the PMS2 subunit and by its

ability to complement nuclear extract of MLH1�/� tumor

cells to restore mismatch-provoked excision.

Immunological analysis also indicated tight association

of ATP�Mn2+-dependent endonuclease with MutLa. As

shown in Figure S4D, incubation of near homogeneous

MutLa with a Protein A-linked anti-PMS2 peptide antibody

followed by removal of Protein A beads resulted in a com-

parable depletion of MutLa polypeptides and ATP�Mn2+-

dependent endonuclease activity.

A Metal Binding Site near the PMS2 C Terminus

Is Required for MutLa Endonuclease

Because endonucleolytic hydrolysis depends on one or

two divalent cations (Galburt and Stoddard, 2002), Fe2+-

dependent hydroxyl radical cleavage (Zaychikov et al.,

1996) was employed to locate metal binding sites within

MutLa. Incubation of MutLa with Fe2+ and a reducing

agent in the absence of ATP revealed a major cleavage

site, which maps near the C terminus of the PMS2 subunit

between methionines 672 and 711, but closer to the latter

residue (Figures 5A–5D). A BLAST screen of the sequence

bracketed by these two residues against the protein data-

base revealed a DQHA(X)2E(X)4E motif that is highly con-

served in eukaryotic homologs of human PMS2 and

MLH3 and is also found in archaeal and eubacterial

MutL proteins but is lacking in MLH1 and MutL proteins



Figure 4. Recombinant MutLa Displays

Mn2+-Dependent Endonuclease Activity

that is stimulated by RFC, PCNA, and

ATP

(A) Endonuclease activity on supercoiled ho-

moduplex f1MR59 DNA was determined as de-

scribed in Experimental Procedures, except

that ATP, MnSO4, and MgCl2 were varied as

shown. When present, MutLa concentration

was 80 nM.

(B) Endonuclease activity on supercoiled

f1MR59 DNA in the presence of ATP-Mn2+

(see Experimental Procedures) was deter-

mined as a function of MutLa concentration in

the absence of other proteins.

(C and D) ATP-Mn2+ endonuclease reactions

(see Experimental Procedures) contained

MutSa, MutLa, RFC, and PCNA as indicated

and supercoiled homoduplex f1MR59 DNA

(C) or supercoiled G-T heteroduplex DNA (D).
from bacteria that rely on d(GATC) methylation to direct

mismatch repair (Figure 5E).

To assess the significance of this metal binding motif, we

constructed MutLa variants with PMS2 D699N or E705K

amino acid substitutions. The latter mutation has been

identified in a Turcot’s syndrome kindred (Miyaki et al.,

1997), although a causative link between the mutation

and the disease was not established. MLH1�PMS2D699N

(MutLaD699N) and MLH1�PMS2E705K (MutLaE705K)

were expressed in SF9 insect cells using baculovirus vec-

tors. MutLaD699N and MutLaE705K, which were isolated

innear homogeneous formas1:1 heterodimers (Figure S5),

fractionated like wild-type protein (data not shown), dis-

played normal ATP hydrolytic activity, and supported

mismatch-dependent assembly of the MutLa�MutSa�
heteroduplex ternary complex (Figure S6). However, Fe2+

binding to the C-terminal PMS2 motif was abolished in

both mutant proteins as judged by hydroxyl radical cleav-

age (Figure 5F). Both mutant proteins were also defective

in ATP-Mn2+-dependent endonuclease activity; failed to

support mismatch repair upon supplementation of

MutLa-deficient nuclear extract prepared from H6 cells;

and were inactive in the MutSa-, MutLa-, RFC-, and

PCNA-dependent incision of the nicked strand of a G-T

heteroduplex (Figure 6). The simplest explanation for these

findings is that the PMS2 DQHA(X)2E(X)4E motif represents

a part of the MutLa endonuclease active site.
MutSa-, MutLa-, RFC-, and PCNA-Dependent

Incision of a Nicked Heteroduplex Requires

Integrity of the MutLa ATP Hydrolytic Centers

As described above, ATP is required for MutSa-, MutLa-,

RFC-, and PCNA-dependent incision of a nicked hetero-

duplex and also enhances Mn2+-dependent MutLa endo-

nuclease activity. A MutLa variant that harbors amino acid

substitutions for MLH1 Glu-34 and PMS2 Glu-41 within

the ATPase centers binds ATP but is largely defective in

mismatch repair (Tomer et al., 2002; Raschle et al.,

2002). As shown in Figure S7A, MLH1E34A�His6-PMS2E41A

(His-MutLaEA) also fails to support 30-directed mismatch-

provoked excision in the purified system and in nuclear

extracts. The mutant protein is also defective in its ability

to support endonucleolytic cleavage of the nicked strand

of heteroduplex DNA in the presence of MutSa, PCNA,

RFC, RPA, and ATP (Figure S7B). Thus, in addition to

the C-terminal metal binding site, integrity of MutLa

ATPase centers is required for its ability to support incision

of a nicked heteroduplex in this four-component system.

DISCUSSION

Human MutLa was initially isolated by virtue of its ability to

restore mismatch repair to nuclear extracts of genetically

unstable colon tumor cells (Li and Modrich, 1995). Despite

its importance in mismatch repair and the fact that roughly
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Figure 5. MutLa Contains a Metal Binding Site in the C-Terminal Portion of PMS2

(A–D) MutLa was incubated in the absence or presence of 20 mM Fe2+ as indicated (see Experimental Procedures). Products were separated on

4%–12% SDS (A and D) or 12% SDS (B and C) gels and visualized by Western blot using a-PMS2 directed against amino acids 9–54 (A),

a-PMS2 directed against residues 800–862 (B), a-MLH1 directed against amino acids 633–662 (C), or a-MLH1 directed against the full-length

MLH1 polypeptide (D). Arrows indicate the major PMS2 product resulting from radical cleavage. Location of PMS2 peptides produced by single-

hit cyanogen bromide cleavage (Grachev et al., 1989) at PMS2 methionine residues 599, 622, 672, 676, and 711 are shown in (B).

(E) Human PMS2 residues located between Met-676 and Met-711 were employed for homology search using the BLAST routine available at http://

www.ncbi.nlm.nih.gov/blast. Alignments shown for the five sequences at the bottom were obtained by running the human PMS2 DQHATDEKYNFE

motif against indicated polypeptide sequences using MegAlign (DNAStar). Conserved residues are shown in red. Asterisks indicate human PMS2

residues altered in this study.

(F) Wild-type MutLa, MutLaE705K, and MutLaD699N were subjected to Fe2+-dependent hydroxyl radical cleavage and analyzed as described in (A).

Controls were incubated in the absence of Fe2+ as indicated.
half of HNPCC mutations lead to MutLa alterations (Pelto-

maki, 2005), the only information available on the function

of the protein was the fact that it is recruited to heterodu-

plex DNA in a MutSa- and ATP-dependent fashion

(Habraken et al., 1998; Blackwell et al., 2001). The demon-

stration that MutLa is a latent endonuclease, activated in

a mismatch-, MutSa-, RFC-, and PCNA-dependent man-

ner, provides a novel context in which to view its function

in mismatch repair. We have also found that MutLa

displays an ATP-Mn2+-dependent endonuclease activity

that can be detected on homoduplex DNA at low salt

concentration. We think it unlikely that the latter activity

has biological significance because a Mn2+ concentration
304 Cell 126, 297–308, July 28, 2006 ª2006 Elsevier Inc.
corresponding to the intracellular level (35 mM; Ash and

Schramm, 1982) is not sufficient to support the reaction

(data not shown).

These findings are of interest in view of the requirement

for ExoI in 30-directed excision both in nuclear extracts

(Genschel et al., 2002; Wei et al., 2003) and in a purified

system comprised of MutSa, MutLa, RFC, PCNA, RPA,

and ExoI (Dzantiev et al., 2004). Because ExoI hydrolyzes

duplex DNA with 50-to-30 polarity (Lee et al., 2002), the

question has been the identity of the activity responsible

for 30-directed hydrolysis. The findings described here ob-

viate the requirement for a 30-to-50 hydrolytic activity in this

defined system. As illustrated in Figure 7, incision of a 30

http://www.ncbi.nlm.nih.gov/blast
http://www.ncbi.nlm.nih.gov/blast


Figure 6. MutLaE705K and MutLaD699N Are Defective in Both Endonuclease and Mismatch Repair Activities

Wild-type MutLa (C), MutLaE705K (,), and MutLaD699N (A) were analyzed for activities as follows.

(A) ATP�Mn2+-dependent endonuclease activity in the absence of other proteins was determined as described in Experimental Procedures, except

that 23 mM NaCl was substituted for 23 mM KCl.

(B) The three proteins were scored for their ability to restore mismatch repair to nuclear extracts of MLH1�/� H6 cells.

(C) Incision of nicked 30 G-T heteroduplex DNA was determined in the presence of MutSa, RFC, PCNA, RPA, ATP-Mg2+, and wild-type or mutant

MutLa as indicated. Reactions and analysis were as in Figure 1B. Results were quantitated by PhosphorImager analysis.
heteroduplex by MutSa, MutLa, RFC, and PCNA, which

tends to occur on the distal side of the mispair relative to

the nick that directs the reaction, provides a 50 terminus

that can serve as an entry site for 50-to-30 hydrolysis by

MutSa-activated ExoI (Genschel and Modrich, 2003).

This accounts for the ability of MutSa, MutLa, ExoI,

RFC, PCNA, and RPA to support 30-directed excision. It

is also noteworthy that although MutLa, RFC, and PCNA

are dispensable for excision directed by a 50 strand break

(Genschel and Modrich, 2003), 50 heteroduplexes are nev-

ertheless subject to incision by the MutSa, MutLa, RFC,

PCNA system. Hence, at least two distinct pathways exist

that are capable of supporting 50-directed mismatch-

provoked excision.

This study also clarifies differences between the find-

ings of Zhang et al. (2005) and those described by Dzan-

tiev et al. (2004) and Constantin et al. (2005). Zhang

et al. have described reconstituted 50-directed mismatch

repair in a system comprised of MutSa, MutLa, ExoI,

RPA, and DNA polymerase d. RPA can be replaced in

this system by HMGB1, and MutLa is dispensable for

the 50-directed reaction as it is in the system described

above. However, this system differs significantly from

those described by Dzantiev et al. and Constantin et al.

Reconstituted 50-directed repair in the system of Zhang

et al. is independent of RFC and PCNA and requires

a much higher DNA polymerase d concentration than

that described by Constantin et al. Furthermore, in con-

trast to the findings of Dzantiev et al. and Constantin

et al., it does not support 30-directed excision or repair

when RFC and PCNA are present. One explanation for

the differences between the findings of Dzantiev et al.

and Zhang et al. is suggested by the fact that the p38 sub-

unit was dramatically underrepresented in the recombi-

nant RFC preparation used by Zhang et al. (see Supple-

mental Data in Zhang et al., 2005). Reduced RFC activity

would explain the failure of Zhang et al. to observe the

expected dependence of 50-directed repair on PCNA,
which is known to be required for the repair synthesis

step of the reaction (Gu et al., 1998; Genschel and Mod-

rich, 2003; Guo et al., 2004). It would also account for

the high polymerase d concentration necessary in their

experiments, as well as their inability to detect 30-directed

excision and repair.

Although incision by the MutSa, MutLa, RFC, PCNA

system is strongly biased (10- to 20-fold) to the discontin-

uous strand of a nicked circular heteroduplex, low but de-

tectable incision of the continuous heteroduplex strand

does occur (Figure 1; Figure 2; Table S1). This strong

but not absolute strand bias could be an intrinsic feature

of the human mismatch repair system. However, low-level

incision of the continuous strand could also reflect limita-

tions of our purified system, e.g., failure to reproduce the

in vivo ionic environment and/or deficiency of one or

more activities that modulate MutLa activation.

Endonucleolytic action of this system is directed by

a preexisting nick or gap, but incision occurs elsewhere

on the helix. The strand bias characteristic of this reaction

implies that the system is capable of maintaining the

identity of the discontinuous heteroduplex strand over

a substantial distance along the DNA contour. This effect

is formally analogous to the ability of the E. coli mismatch

repair system to establish heteroduplex orientation and

requires signaling along the helix. Although the mecha-

nism of signaling during mismatch repair is the subject

of active debate, a favored model invokes ATP-promoted

movement of MutSa and the MutSa�MutLa complex

along the helix contour (Kunkel and Erie, 2005; Iyer

et al., 2006).

The molecular roles of RFC and PCNA in the activation

of MutLa endonuclease also remain to be defined. How-

ever, because RFC loading of PCNA onto the helix is nec-

essary for 30-directed excision (Dzantiev et al., 2004), it

seems probable that the loaded form of PCNA will prove

necessary for endonuclease activation. MutLa-MutSa,

MutSa-PCNA, and MutLa-PCNA interactions have been
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Figure 7. Incision of the Discontinuous Heteroduplex Strand in Human Mismatch Repair

The model shown summarizes observations of this study. MutSa, PCNA, and RFC activate a latent MutLa endonuclease, which incises the discon-

tinuous strand of 50 or 30 heteroduplex DNAs in an ATP-dependent reaction. For the substrates tested here, incision displays a bias for occurrence on

the distal side of the mismatch relative to the location of the original strand break (large red arrows) but can also occur proximal to the mispair (small

red arrows). For a 30 heteroduplex, this yields a new 50 terminus on the distal side of the mismatch that serves as an entry site for MutSa-activated ExoI,

which removes the mismatch in a 50-to-30 hydrolytic reaction controlled by RPA (Genschel and Modrich, 2003). As described in the Discussion, the

strong bias for incision of the discontinuous strand implies signaling along the helix contour, which may involve ATP-promoted movement of MutSa or

the MutSa�MutLa complex along the helix. This feature of the mechanism is not illustrated in the diagram shown.
documented (Dzantiev et al., 2004; Kunkel and Erie, 2005;

Iyer et al., 2006; Lee and Alani, 2006), and it would not be

surprising if PCNA interaction with MutLa, MutSa, or both

proteins were to play a key role in MutLa activation.

Because optimal conditions for mismatch repair in both

extracts and purified systems involve a substantial molar

excess of MutLa over heteroduplex (Dzantiev et al.,

2004; Zhang et al., 2005; Constantin et al., 2005), a valid

kcat for the activated form of MutLa endonuclease cannot

be calculated. A minimum value for this parameter of 0.03

min�1 can be estimated from the data in Figure S2, but the

actual value may be considerably higher. Nevertheless,

this minimum estimate compares favorably with the value

of 0.1 min�1 determined for the E. coli MutH endonuclease

upon activation by MutS and MutL (Au et al., 1992).

We have also detected occurrence of an incised hetero-

duplex intermediate in human cell nuclear extracts that is

similar to that produced in the MutSa, MutLa, RFC, PCNA

system. Production of this species in nuclear extracts is

mismatch and MutLa dependent, suggesting that it is

a bona fide intermediate in mismatch repair. However,

the reaction that produces this intermediate in the purified

system differs somewhat from that in nuclear extracts.
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Incision events in nuclear extracts are more restricted to

the vicinity of the mispair than those that occur in the pu-

rified system are (Figure S3A). A related effect has been

previously noted with respect to excision tract length in

the bidirectional excision system comprised of MutSa,

MutLa, ExoI, RFC, PCNA, and RPA (Dzantiev et al.,

2004). These observations imply that the four-component

endonucleolytic system and the six-component excision

system are lacking one or more regulatory activities that

modulate their DNA hydrolytic functions. We have identi-

fied such an activity in HeLa nuclear extracts and are

pursuing its isolation (J. Genschel and P.M., unpublished

data).

The PMS2 metal binding motif DQHA(X)2E(X)4E is re-

quired for MutLa endonuclease function and likely com-

prises part of the endonuclease active site. This motif is

highly conserved in eukaryotic homologs of human

PMS2 and MLH3 but is lacking in homologs of human

MLH1 and PMS1. Interestingly, like the MLH1�PMS2

(MutLa) complex, the human MLH1�MLH3 (MutLg) heter-

odimer supports mismatch repair whereas human

MLH1�PMS1 (MutLb) does not (Raschle et al., 1999; Can-

navo et al., 2005). Furthermore, we have found that yeast



MutSa, MutLa, RFC, and PCNA support endonucleolytic

incision of nicked heteroduplex DNA in a manner similar

to the human proteins and that yeast MutLa displays

weak endonuclease in the presence of ATP�Mn2+

(F.A.K., S. Holmes, M. Arana, T. Kunkel, and P.M., unpub-

lished data). The DQHA(X)2E(X)4E motif is also present in

archaeal and eubacterial MutL proteins but is absent in

MutL proteins from bacteria like E. coli that rely on

d(GATC) methylation to direct mismatch repair (Figure 5E).

In contrast to the heteroduplex endonuclease activity

supported by human and yeast proteins, we have been

unable to detect a similar activity using near homoge-

neous preparations of E. coli MutS, MutL, the b replication

clamp, and the g complex clamp loader, in either the

presence or absence of SSB and DNA helicase II (O.

Lukianova, M. O’Donnell, and P.M., unpublished data).

These system differences might suggest a role for the

DQHA(X)2E(X)4E endonuclease motif in strand discrimina-

tion; however, as noted above, mismatch-dependent

activation of MutLa endonuclease is restricted to prein-

cised heteroduplexes. The absence of this MutL motif in

systems that rely on d(GATC) methylation for strand

discrimination may therefore reflect fundamental differ-

ences in the modes of excision initiation in these different

organisms, an idea that is supported experimentally (Dao

and Modrich, 1998; Dzantiev et al., 2004).

In addition to its role in postreplication mismatch repair,

MutLa has been implicated in the cellular response to cer-

tain types of DNA damage (Stojic et al., 2004), as well as

meiotic and mitotic recombination phenomena (Surtees

et al., 2004). While we tend to view the strand-specific re-

actions described here and elsewhere (Genschel and

Modrich, 2003; Dzantiev et al., 2004; Constantin et al.,

2005; Zhang et al., 2005) in the context of postreplication

repair, it would not be surprising if the MutLa endonucleo-

lytic function were to contribute to these other pathways

as well.

EXPERIMENTAL PROCEDURES

Proteins

Construction of expression vectors for MutLaD699N and MutLaE705K

is described in the Supplemental Data. Human RFC (85%–90% pure;

Figure S5); recombinant human MutSa, MutLa, MutLaD699N,

MutLaE705K, ExoIb, PCNA, and RPA; and yeast RFCDN (all R95%

pure) were isolated as described (Dzantiev et al., 2004). Recombinant

yeast RFC (95% pure) was purified according to Finkelstein et al.

(2003). Other than ExoI, all proteins were free of detectable exonucleo-

lytic activity (Dzantiev et al., 2004; Table S2). Protein concentrations

were determined using the Bio-Rad Protein Assay Kit with bovine se-

rum albumin (BSA, Pierce) as standard and are expressed as moles of

heterodimer for MutSa and MutLa, moles of monomer for ExoIb, moles

of heterotrimer for RPA, moles of homotrimer for PCNA, and moles of

heteropentamer for both human and yeast RFC.

Mismatch-Provoked DNA Hydrolytic and Repair Reactions

Construction of heteroduplex substrates is described in the Supple-

mental Data. Mismatch-provoked hydrolytic reactions were performed

by a minor modification of the previously described method (Dzantiev

et al., 2004). Unless indicated otherwise, reactions (40 ml) contained 20

mM HEPES-KOH (pH 7.6), 125 mM KCl, 5 mM MgCl2, 2 mM ATP,
1 mM dithiothreitol (DTT), 1 mM glutathione, 0.5 mg/ml bovine serum

albumin (BSA), 5% (vol/vol) glycerol, and 0.2 mg substrate DNA

(1.2 nM nicked 50 or 30 DNA or 1 nM gapped 30 DNA). MutSa (25

nM), MutLa (20 nM), RFC (9 nM), PCNA (30 nM), RPA (100 nM), ExoIb

(2.5 nM), or 100 mg human nuclear extract was present as indicated.

BSA was omitted from reactions containing nuclear extract. Repair

of gapped 30 heteroduplex in 100 mg nuclear extract was determined

under the buffer conditions described above, but reactions also con-

tained 0.2 mM each dATP, dGTP, dCTP, and dTTP and were supple-

mented with MutLa as indicated.

After incubation at 37�C for 10 min, reactions were terminated as de-

scribed previously (Dzantiev et al., 2004) or by the addition 30 ml of

0.35% SDS, 0.3 mg/ml Proteinase K, 0.4 M NaCl, 0.3 mg/ml glycogen,

5 mM MgCl2, followed by incubation of the samples at 55�C for 15 min.

After extraction with phenol/chloroform and isopropanol precipitation,

recovered DNA was digested with NheI and ClaI (or HindIII and AlwNI

for the gapped 30 heteroduplex) to score excision (Genschel et al.,

2002; Dzantiev et al., 2004) or BspEI and AlwNI to score mismatch re-

pair of the gapped 30 heteroduplex. Alternatively, DNA products were

hydrolyzed with the indicated restriction enzyme, resolved by electro-

phoresis through alkaline 0.9%–1% agarose, transferred to a nylon

membrane, and probed with the indicated 32P-labeled oligonucleotide

(Fang and Modrich, 1993; Dzantiev et al., 2004). To reprobe a mem-

brane with a different oligonucleotide, the membrane was stripped

by incubation in two changes (15–20 min each) of 0.2 M NaOH, one

change of water, and one change of 0.1 M Tris-acetate (pH 7.4),

0.1% SDS with rotation. Hybridized probe was visualized and quanti-

tated using a Molecular Dynamics PhosphorImager.

ATP�Mn2+-Dependent Endonuclease Assays

Mn2+-dependent endonuclease activity on covalently closed circular

DNA was determined in 40 ml reactions containing 20 mM HEPES-

KOH (pH 7.6), 23 mM KCl, 1 mM MnSO4, 0.5 mM ATP as indicated,

1 mM DTT, 1 mM glutathione, 0.5 mg/ml BSA, 2% (vol/vol) glycerol,

and 0.2 mg (1.2 nM) supercoiled f1MR59 (Dzantiev et al., 2004) or

G-T heteroduplex DNA. MutSa (25 nM), MutLa (20 nM or as indicated),

PCNA (30 nM), and RFC (9 nM) were included as indicated. Incubation

was at 37�C for 20 min, and reactions were terminated by addition of

SDS, EDTA, and Proteinase K to 0.1%, 14 mM, and 0.1 mg/ml, respec-

tively. After further incubation at 55�C for 15 min, PMSF was added to

4 mM, and products were resolved by electrophoresis through 0.8%

agarose in 40 mM Tris-acetate, 1 mM EDTA (pH 8.2). After staining

with 0.5 mg/ml ethidium bromide, DNA species were quantified using

a cooled photometric grade CCD camera and ImageJ software.

Fe2+-Induced Protein Cleavage

EDTA was removed from wild-type and mutant MutLa preparations by

dialysis against 800–1000 volumes of 50 mM HEPES-KOH (pH 7.4),

10% (wt/vol) glycerol, 0.2 M NaCl, 2 mM DTT, 1 mg/ml aprotinin,

1 mg/ml leupeptin, 1 mg/ml E64, and 0.7 mg/ml pepstatin. Dialyzed sam-

ples (0.1–0.35 mM MutLa) were incubated on ice in 50 ml reactions con-

taining 50 mM HEPES-KOH (pH 7.4), 1% glycerol, 20 mM NaCl, 2 mM

DTT in the absence or presence of 20 mM FeCl2 for 15–16 hr (Zaychikov

et al., 1996). Reactions were stopped by addition of EDTA to 5.7 mM,

and protein products were resolved by electrophoresis through 12%

or 4%–12% polyacrylamide gels in the presence of 0.1% SDS. After

transfer to PVDF membranes (GE Healthcare), proteins were visualized

by Western analysis using a-PMS2 antibodies directed against PMS2

residues 9–54 (Novus) or residues 800–862 (Santa Cruz Biotechnol-

ogies) or a-MLH1 antibodies against the full-length protein (Calbio-

chem) or MLH1 residues 633–662 (Novus). Immune complexes were

detected with horseradish-peroxidase-conjugated secondary anti-

bodies and the ECL Plus system (GE Healthcare).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, seven figures, and two tables and can be
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found with this article online at http://www.cell.com/cgi/content/full/

126/2/297/DC1/.
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